
A Strictly Linear Proof System for
Propositional Classical Logic

Victoria Barrett

A thesis submitted for the degree of Doctor of Philosophy
University of Bath

Department of Computer Science

July 2024

Abstract

We present a proof system for a conservative extension of propositional clas-
sical logic with decision trees that is strictly linear. This means that not
only there are no structural rules such as contraction and weakening but
there are no rules for unit equalities either, and there is no negation. Yet, its
classical semantics and proof-theoretic properties can be recovered via an in-
terpretation map at a polynomial cost. Moreover, this system can p-simulate
substitution Frege. Those results are made possible primarily by two tech-
nical advances: 1) an ‘Eversion Lemma’, that guarantees extreme flexibility
in manipulating formulae to match a given logical context, and 2) a form
of explicit substitution for derivations into derivations. We argue that this
proof system represents a significant step towards a notion of factorisation
for proofs. That will hopefully lead us to a semantics of proofs adequate to
solve the proof identity problem.

1

Acknowledgements

First, and most of all, I would like to thank my supervisor, Alessio Guglielmi.
He introduced me to deep inference, and gave me all the time and support
and pastéis de nata I needed over the course of this PhD. I have had so much
fun working on these ideas with him and I wish that he were able to see the
finished work.

I would also like to thank my examiners, Guy McCusker and Lutz Straßburger.
I hope that you agree that your comments and questions in the viva have im-
proved this work significantly; I found them invaluable and I’m very grateful
for your time and expertise.

There are also so many members, previous and current, of the Math Found
group in Bath to whom I am grateful, and members of the community from
further afield. I will mention only a few: Paola Bruscoli, who has been
like family, for all of the advice and help that you have given me; Alessio
Santamaria, for being such a good friend to me when I first started and
helping me to find my feet; and Ben Ralph, for helping so much with the
final push.

I would like to thank my family, who have been a constant source of
support, encouragement, and belief. Finally I would like to thank my part-
ner, Andy, who is always an inspiration to me. Without your LATEXtrouble-
shooting, this thesis would be hand-written.

2

Declarations

Copyright notice

Attention is drawn to the fact that copyright of this thesis rests with the
author and copyright of any previously published materials included may rest
with third parties. This thesis has been supplied on condition that anyone
who consults it understands that they must not copy it or use material from
it except as licenced, permitted by law or with the consent of the author or
other copyright owners, as applicable.

Declaration of any previous submission of the

work

The material presented here for examination for the award of a research
degree by research has not been incorporated into a submission for another
degree

Declaration of authorship

I am the author of this thesis, and the work described therein was carried out
by myself personally, in collaboration with my supervisor Alessio Guglielmi.

3

Contents

1 Introduction 6
1.1 Deep Inference . 6
1.2 Subatomic Logic . 9
1.3 Strict Linearity . 10
1.4 Outline . 12

2 Formalisms 15
2.1 Pre-derivations . 15
2.2 Substitutions . 19
2.3 Composition by Expansion . 22
2.4 Synchronal Composition . 25
2.5 Open Deduction with Substitution 27

3 Proof Systems 28
3.1 Preliminaries . 28
3.2 Standard Proof Systems . 31
3.3 Subatomic Proof Systems . 33

4 Abstraction and Structural Equivalence 44
4.1 Definitions . 46
4.2 Abstraction for Strictly Linear Systems 49

5 The Eversion Lemma 59
5.1 Merge . 61
5.2 Eversion . 71
5.3 System DT∗ . 73

4

6 Strict Linearity 78
6.1 Compression via Eversion . 79
6.2 Compression via Explicit Substitutions 81
6.3 Main theorem . 82

7 P-Simulation of Substitution Frege 91
7.1 Supersubstitution . 92
7.2 Substitution Frege . 97
7.3 P-Simulation . 99

8 Cut Elimination 117
8.1 Cut Elimination via KDTEq-OD 119
8.2 Cut Elimination for Regular Proofs 120

9 Conclusions 131

5

Chapter 1

Introduction

This work belongs to the area of structural proof theory called deep inference
[18], and in particular to the recently introduced research on subatomic proof
systems [2].

1.1 Deep Inference

Deep inference is a methodology for the design of proof formalisms; that
is, for the design of the language of proofs and how they can be composed.
Proof formalisms within the deep inference methodology are distinct from
Gentzen formalisms, such as natural deduction and the sequent calculus, in
which proofs are represented as trees of formulae where rules operate only on
the main connective of a formula, and proofs can be composed horizontally
only by conjunction and vertically by rule.

By contrast in deep inference formalisms, we can apply rules at any depth
inside a formula. In the formalism of open deduction [20], which is the pri-
mary formalism used in this thesis, this is equivalent to allowing the free
composition of proofs by any connective, extending the horizontal mecha-
nism for composition by connective from formulae to proofs.

In this way, open deduction factors out the order in which rules are ap-
plied where this doesn’t matter to the essence of the proof; what is called
bureaucracy of type A in [34]. For example, suppose that we have an open
deduction derivation as follows:

6

A
ψ

B
⋆
C
χ

D
;

that is, a derivation ψ of B from a premise A and a derivation χ of D
from a premise C, composed by a binary logical connective ⋆. This forms a
derivation with premise A⋆C and conclusion B⋆D. The derivations ψ and χ
do not interfere with one another and so we can represent them as occurring
in parallel rather than sequentially. In a Gentzen system for classical logic,
this would be impossible when ⋆ is a disjunction.

This is one of the main goals of deep inference: to obtain a good notion
of semantics of proofs, by progressively abstracting away syntactic differ-
ences and identifying equivalence classes of proofs which do not differ in the
essentials but only in so-called ‘bureaucracy’.

Another type of bureaucracy, which is called type B in [34], is one of
the problems addressed by this thesis. An example of this is the following.

Suppose that we have a derivation
K{x}

ψ(x)

H{x}
and an inference rule

A
r
B

. From

these we can obtain the following two derivations:

K

{
A

r
B

}
ψ(B)

H{B}

K{A}
ψ(A)

H

{
A

r
B

}
,

which differ only in whether the inference step
A

r
B

occurs at the top or

the bottom of the derivation.
Deep inference is also motivated by the pursuit of locality: inference steps

in a derivation should be small and quick to check. We therefore want rules
in deep inference systems to be either atomic or linear, such as the atomic
contraction and the medial rule, shown here:

a ∨ a
c

a

(A ∧B) ∨ (C ∧D)
m

(A ∨ C) ∧ (B ∨D)

To check the validity of an occurrence of the atomic contraction, it suffices
to check that the three atoms match. To check the validity of an occurrence

7

of the medial, we need only to check that the six connectives are in the correct
configuration, not look inside the formulae (given a suitable representation
of the proof system).

It is the medial rule which allows us to decompose structural rules such
as the contraction to their atomic form, as shown by Brünnler and Tiu in
[10]. For example, a contraction on a formula A ∧ B can be decomposed
progressively as follows:

(A ∧B) ∨ (A ∧B)
c

A ∧B
⇝

(A ∧B) ∨ (A ∧B)
m

A ∨ A
c

A
∧

B ∨B
c

B

.

While the medial rule could be introduced to a Gentzen system as a sound
rule, Brünnler has shown that it could not be used to this same effect there
[8].

The locality of rules in deep inference systems allows for good normalisa-
tion properties. We want to be able to use simple procedures to transform
derivations to a normal form, and we want the derivations to have clear
induction measures by which this can done.

One example of a normalisation procedure is cut elimination. A cut is a
rule which breaks the subformula property: logical material appears in its
premise which does not appear in its conclusion. The cut rule can create
arbitrarily large amounts of material inside a proof, which complicates proof
search. In Gentzen systems, cuts are eliminated by permuting the steps
one through another, to move the cuts to the top of the proof where they
can be more easily eliminated [16]. Whenever a cut is permuted through
a contraction, everything is duplicated. In deep inference, the presence of
linear rules such as the medial rule allows us to give cuts and contractions
atomically, so that when we permute a cut through a contraction we are only
duplicating the smallest amount that we need to duplicate.

In deep inference, the locality of rules allows us to decompose normalisa-
tion procedures into phases in a way not possible in Gentzen systems [30].
Deep inference also achieves cut elimination in quasipolynomial time [24, 7],
achieving an exponential speed-up over Gentzen systems.

8

1.2 Subatomic Logic

Recent research into subatomic logic by Guglielmi and Aler Tubella has
shown that by pursuing of locality even further, we can obtain standard
proof-theoretic results, such as cut elimination, in proof systems with linear
structural rules, and then interpret those results into standard logics [2, 3].
This can be done because many common inference rules, linear and non-
linear, can be encoded by a common linear shape at the subatomic level,
which we call the subatomic shape:

(A α B) β (C α D)

(A β C) α (B β D)
,

subject to a condition on the logical strength of the connectives α and β.
In subatomic logic, atoms are treated as non-commutative self-dual con-

nectives whose arguments are their truth values; it has been shown by Tiu
in [37] that deep inference is the only way to obtain cut elimination for such
connectives in linear proof systems. Atoms are not distinguished from other
connectives at the subatomic level: inference rules can apply to formulae in
their scope.

An interpretation map C into classical logic can recover an atomic con-
traction and an atomic cut from subatomic logic as follows:

(0 a 1) ∨ (0 a 1)

(0 ∨ 0) a (1 ∨ 1)
7→C

a ∨ a
a

(1 a 0) ∧ (0 a 1)

(1 ∧ 0) a (0 ∧ 1)
7→C

ā ∧ a
f

.

Subatomic logic does not have negation; this is recovered by the inter-
pretation map, by which the formulae 0 a 1 and 1 a 0 are interpreted as a
and ā respectively. In addition, the interpretation map collapses formulae
according to unit equalities, so that (1 ∧ 0) a (0 ∧ 1) becomes 0 a 0, which is
interpreted as the false unit f of classical logic.

The subatomic shape is able to capture a range of logics, including those
which cannot be expressed in a Gentzen formalism such as BV, and charac-
terise their normalisation in a general way, which is explored in [2]. Indeed,
although translating a proof system into subatomic logic results in a larger
space of proofs, normalisation is simplified because there is only a single
rule shape, and so the number of possible interactions is limited. There-
fore, to normalise a standard, non-subatomic derivation, we can translate it

9

to subatomic logic and perform normalisation in that environment, before
projecting back to the standard level.

This thesis takes the principles underlying subatomic proof theory even
further. In previous work in subatomic logic, the structural rules are sub-
sumed by the subatomic rule shape but inference rules obtained from unit
equalities are left intact. However, because the interpretation map can ap-
ply these unit equalities as rewriting rules, there is a redundancy here and a
natural question arises: can the rules obtained from unit equalities be elimi-
nated from subatomic proof systems? In this thesis we show that the answer
is positive.

1.3 Strict Linearity

We call a proof system strictly linear if it contains only rules of the sub-
atomic shape. Inference rules based on unit equalities such as A ∧ t = A
are not strictly linear, because they are not linear in the units. We have two
motivations for studying such systems.

The first concerns normalisation. With only a single rule shape, normal-
isation procedures can be simplified yet further, and interference caused by
unit-equality inference steps can be eliminated.

The second concerns semantics and complexity. In open deduction, deriva-
tions can be composed vertically by rule and horizontally by connective.
These two mechanisms are both additive: the size of a derivation is the sum
of the sizes of its constituent parts. We want to introduce a multiplica-
tive mechanism for composition, based on explicit substitution. Factorising
proofs into explicit substitutions will compress proofs and help to factor out
bureaucracy of type B.

For example, if we have a proof ϕ(ψ, ψ, ψ), where ψ is a repeated subproof
inside ϕ, we would like to be able to factorise this as ⟨ψ|x⟩ϕ(x, x, x). The
substitution is a part of the formalism, and so the proof so obtained only con-
tains one copy of ψ instead of three. We would like the notion of substitution
to allow for modular normalisation of derivations, so that this also benefits
the complexity of normalisation procedures. For example we would like to be
able to normalise ψ inside the explicit substitution, normalise ϕ(x, x, x), and
then apply the substitution to obtain the same result as if we had normalised
ϕ(ψ, ψ, ψ).

We would also like to identify the two derivations

10

K

{
A

r
B

}
ψ(B)

H{B}

K{A}
ψ(A)

H

{
A

r
B

}
shown in the example of bureaucracy of type B by factoring the rule into

an explicit substitution, so that

⟨ A
r
B

∣∣∣∣∣x⟩ K{x}
ψ(x)

H{x}

is a representative of an equivalence class containing both of those deriva-
tions.

How precisely we could achieve these goals is a long-standing open prob-
lem in deep inference. It is understood that a derivation can be substituted
into a cut or an identity by bending it around as shown here:

⟨ A
ψ1

C
ψ2

B

∣∣∣∣∣∣∣∣∣x⟩ t
i
x ∨ x̄

7−→

t
i

C
ψ2

B
∨

C̄
ψ̄1

Ā

,

Similarly a derivation can be substituted into a contraction or cocontrac-
tion by spreading it through as shown here:

⟨ A
ψ1

C
ψ2

B

∣∣∣∣∣∣∣∣∣x⟩ x ∨ x
c

x
7−→

A
ψ1

C
∨

A
ψ1

C
c

C
ψ2

B

.

This is the intuition on which we want to base the theory of substitutions
in deep inference, but difficulties arise because derivations can contain cycles
between cuts and identities, as studied in [4]. It is not obvious how to define
the substitution of a derivation into a cycle, in particular because these two

11

intuitions can lead to a conflict. This problem has been investigated by
Santamaria in [31].

We could address this problem by defining the formalism for explicit sub-
stitutions such that while formulae can be substituted into cycles, derivations
cannot be. We prefer not to do this, because such a restriction would mean
that whenever we compose two derivations we must check whether we are
creating a cycle, which sacrifices locality.

A strictly linear proof system can provide a theoretical foundation for
the development of explicit substitutions without having to exclude those
derivations which contain cycles. There is no duplication or negation of
what we substitute into, and proofs at the standard level can be recovered
from them. We can therefore first define explicit substitutions for strictly
linear proofs and explore how they impact complexity and normalisation,
and then in the future lift this to the standard, non-subatomic level using
the interpretation from subatomic to standard logic.

We intend to develop the notion of explicit substitution in an incremen-
tal way; indeed, in this thesis we offer two definitions, the second of which
subsumes the first. We do this because we want to limit other sources of
complexity, such as the time taken to decide equality of two formulae in the
presence of such substitutions; increasing the expressive power of explicit
substitutions then increases the complexity of the decision procedure.

One of the strengths of subatomic logic is that it can describe normalisa-
tion procedures which apply to a wide range of logics. However, in this thesis
we focus almost entirely on propositional classical logic. This is because our
primary investigation is into the complexity of strictly linear proof systems
with explicit substitutions, and by working in classical logic we are able to
compare against the benchmark systems of Frege and substitution Frege [15].
It is nevertheless our intention that these ideas be extended to a wider range
of logics, including first- and higher-order logics.

1.4 Outline

In Chapters 2 and 3 we define the preliminaries necessary for the thesis.

• In Chapter 2, we introduce explicit substitutions and describe the ways
in which derivations containing them can be composed. We do not
commit to any proof system in particular in this section, because we

12

treat explicit substitutions as a composition mechanism belonging to
the formalism and independent of any proof system.

• In Chapter 3 we introduce the proof systems which we will use in this
work; in particular we introduce subatomic and strictly linear systems
for classical logic. We introduce several properties of proof systems
which will be of interest in the thesis, and give proof systems which vary
only in these properties. This will allow us to compare the effect on
complexity of eliminating unit-equality inference steps and introducing
explicit substitutions.

In Chapters 4 and 5 we introduce the technical machinery which we will
use to prove the results in the later chapters.

• In Chapter 4 we define a map which will allow us to abstract away
properties of proofs in the varying systems for classical logic so that we
can compare their essential structure and define when two proofs are
‘structurally equivalent’. We aim to define this map in such a way that
it will commute with normalisation procedures.

• In Chapter 5 we prove the technical lemma, called the Eversion Lemma,
which enables us to prove the results in Chapters 6 and 8. The sub-
atomic shape requires that the premise and conclusion follow a partic-
ular structure; and this lemma shows that we are able to mimic such
structures in order to apply the subatomic rule.

In Chapters 6, 7 and 8 we prove three theorems which serve as tests for
our notion of a strictly linear proof system with explicit substitutions. The
first two tests concern complexity and the third concerns normalisation.

• In Chapter 6 we show that the unit-equality inference steps can be
eliminated from a subatomic system for propositional logic, obtaining
a strictly linear system which is complete for classical logic, without
changing the structure of the derivation as defined in Chapter 4. In
particular, we show that by using eversion and explicit substitutions
we can achieve this with only a polynomial complexity cost in the size
of the derivation.

• In Chapter 7 we show that a strictly linear system within a formalism
with explicit substitutions is powerful enough to p-simulate substitu-
tion Frege. In order to do this, we use a more expressive notion of

13

explicit substitution than we need in the previous chapter, resulting in
a natural overall translation scheme.

• In Chapter 8 we show that the cut rule can be eliminated from the
strictly linear system in a way which is preserved by interpretation to a
more abstract subatomic system or the standard, non-subatomic level.
In particular we show that proofs obtained from the standard level
admit a very simple cut elimination procedure.

14

Chapter 2

Formalisms

In [20], pre-derivations are introduced as a logic-independent way to reason
about the composition of derivations. The composition of pre-derivations
does not rely on instances of composition by rule belonging to some proof
system, because pre-derivations exist at the level of the formalism, prior to
the selection of any proof system.

In this section, we extend the definition of pre-derivation to include ex-
plicit substitutions. We do this in the formalism, independent of any proof
system, because we view the substitutions primarily as a composition mech-
anism and not as a rule. In order to reason generally about the compo-
sition of derivations with substitutions, we introduce first the definition of
pre-derivation without any check for correctness, obtained only by the free
composition by substitutions and the expansions of substitutions. We then
fix a notion of correctness for these compositions.

We borrow the term ‘explicit substitution’ from work in the lambda cal-
culus [1, 25]. In this thesis we do not use any technical results from this
existing body of work, but it is possible that in extending our formalism
beyond the case that we study here we will discover more overlap between
these theories.

2.1 Pre-derivations

Definition 2.1.1. We assume that we are given the following mutually dis-
joint countable sets:

• atoms A, denoted by a, b, c, . . . ;

15

• connectives C =
⋃n

1 Ci, denoted by α, β, γ, . . . , and other symbols;

• units U , denoted by uα, uβ, uγ, . . . , and other symbols.

We also have the following countable set, disjoint from A, C and U :

• variables V , denoted by x, y, z, w,

The set of pre-derivations P(A, C,U), denoted by ϕ, ψ, χ, ω, . . . , is defined
by the grammar:

P ::= V | A | U∣∣∣∣ C1(P) | · · · | Cn(P , . . . ,P︸ ︷︷ ︸
n

) | · · · composition by connective,∣∣ ⟨P|V⟩P composition by (explicit) substitution,∣∣∣∣∣ P
::

P
composition by expansion,∣∣∣∣∣ P

P
composition by inference or inference step,

where P stands for P(A, C,U). We say that ⟨ϕ|x⟩ψ is the explicit substi-
tution of ϕ into a variable x of ψ. We define free and bound variables in
the usual way: in particular every occurrence of x in ψ is bound in ⟨ϕ|x⟩ψ
and if a variable occurrence is not bound it is free. We do not consider the
substitution variable x in ⟨ϕ|x⟩ to be an occurrence of the variable x so it is
neither free nor bound, and we may assume that it is different from all free
variables of ϕ in ⟨ϕ|x⟩ψ . We denote by ϕ the set of free variables appearing
in the pre-derivation ϕ.

We say that a pre-derivation is open if it contains no units or atoms
(so that its every leaf is a free variable that can be substituted into) and
that it is flat if it contains no explicit substitutions. A (pre-derivation)
context ϕ{ } · · · { } is a pre-derivation in which some pre-derivations are sub-
stituted by holes; ϕ{ψ1} · · · {ψn} denotes an pre-derivation where the n holes
in ϕ{ } · · · { } have been filled with ψ1, . . . , ψn. Connectives in C2 are usu-
ally written infix, for example α(ϕ, ψ) is written ϕ α ψ. Connectives in C1
are called unary, those in C2 binary, and so on. Explicit substitution terms

16

such as ⟨ϕ|x⟩ can be denoted by π, ρ, σ, τ , and so on. The empty substitu-
tion is denoted by ϵ. We may drop parentheses and boxes when there is no
ambiguity. We denote by ϕ ≡ ψ the syntactic identity of ϕ and ψ modulo
renaming of bound variables and associativity of compositions by expansion
and inference.

Example 2.1.2. For a, b ∈ A, u ∈ U , w, x, y, z ∈ V and ∧,∨ ∈ C2, the
following constructions, ϕ1, ϕ2, ϕ3 are pre-derivations, and the construction
ϕ4{ }{ } is a pre-derivation context:

ϕ1 ≡

a

a ∨ x
∧ ⟨b ∧ u

b

∣∣∣∣∣y⟩ (y ∧ y)

:::::::::::::::::::::::::

(a ∨ x) ∧ (b ∧ b)
(a ∨ b) ∨ (x ∨ b)

ϕ2 ≡

w

w ∨ x
∧ ⟨y ∧ zz

∣∣∣∣∣y⟩ (y ∧ y)

::::::::::::::::::::::::::

(w ∨ x) ∧ (z ∧ z)

(w ∨ z) ∨ (x ∨ z)

ϕ3 ≡
a

a ∨ x
∧

b

b ∨ c

(a ∨ b) ∨ (x ∨ c)

ϕ4{ }{ } ≡
{ } ∧ ⟨ y

y ∨ z

∣∣∣∣∣y⟩ y
:::::::::::::::::

(w ∨ x) ∧ (y ∨ z)

(w ∨ y) ∨ { }

The pre-derivation ϕ2 is open, because it contains no units or atoms. The
pre-derivation ϕ3 is flat because it contains no explicit substitutions. In-
stances of composition by inference are not labelled by a rule because we
are not committed to any proof system here. We have not yet introduced a
notion of correctness for composition by expansion, but we may note that the
instances of composition by expansion in ϕ1 and ϕ2 are correct with respect
to Definition 2.3.4.

Notation 2.1.3. Although it is not strictly necessary from a technical point
of view, we informally consider derivations equivalent under the following
associativity equations:

ϕ
::

ψ
:::

χ

=

ϕ
:::

ψ
::

χ

,

ϕ

ψ
:::

χ

=

ϕ

ψ
::

χ

,

ϕ
::

ψ

χ

=

ϕ
:::

ψ

χ

and

ϕ

ψ

χ

=

ϕ

ψ

χ

.

17

Consequently, we usually drop unnecessary boxes, and have indeed dropped
them in the example above. The implicit understanding is that the prece-
dence of the ‘vertical’ derivation constructors could be established if desired,
and it would be respected by the operations that we define in this thesis.

Remark 2.1.4. In Definition 2.1.1, we distinguish atoms and variables. In
standard proof systems they could be conflated because they both occur as
leaves of a formula; however, in subatomic proof systems atoms are reclassi-
fied as connectives and so we define them separately. We distinguish typo-
graphically atoms-as-leaves and atoms-as-connectives by writing the latter in
boldface: a, b, c

Remark 2.1.5. We define composition by connective in such a way that con-
nectives are positive in all of their arguments, but a more general definition
with negative arguments could be given which is important for intuitionistic
logics (see, for example, the atomic λ-calculus [22]).

Definition 2.1.6. The set of formulae F(A, C,U), denoted by A, B, C,
D, . . . , contains all and only the pre-derivations of P(A, C,U) that do not
contain any composition by inference or by expansion. Depending on the
circumstances, an involution called negation might be defined over formulae:
·̄ : F(A, C,U) → F(A, C,U); if this is the case, variables and atoms denoted
by x, y, . . . , a, b, . . . are called positive and those denoted by x̄, ȳ, . . . , ā,
b̄, . . . are called negative. Formula contexts are denoted by A{ } · · · { } or
A{ }1...n (a formula with n holes), and other letters, in particular, H and
K, can take the place of A; sometimes we write A ≡ A{B} to indicate the
formula A where the location of its subformula B has been singled out; we
also write A{xi}1...n to stand for A{x1} · · · {xn}. A skeleton context is a
formula context where no atoms, units or free variables appear (but bound
variables can appear).

Example 2.1.7. A ≡ (B ∧ x) ∨ (C aD) is a formula, in which a appears as
an atom-as-connective.

A′{ } ≡ ({ }∧x)∨(CaD) is a formula context, and is such that A′{B} ≡
A.

A′′{ }1...4 ≡ ({ }1 ∧ { }2) ∨ ({ }3 a { }4) is a skeleton context, and is such
that A{B}1{x}2{C}3{D}4 ≡ A.

18

2.2 Substitutions

We now define actual substitutions, which generalise the standard notion
of substitution on terms to pre-derivations. They have the usual properties
of substitutions, for example, associativity. Their definition requires care
because, contrary to standard substitutions for terms, we need to deal with
negation and with the vertical composition of derivations.

Definition 2.2.1. Actual substitutions are maps V → F(A, C,U). We de-
note an actual substitution which maps x to A and leaves all other variables
unchanged by [A|x]. Actual substitutions can be applied to pre-derivations
and [A|x]ϕ stands for the pre-derivation obtained by replacing every free
occurrence of x in ϕ by the formula A and, if an involution ·̄ is defined, by
replacing every free occurrence of x̄ by Ā; we say that this substitutes A for x
in ϕ. When no involution is defined, actual substitutions can be extended to
maps V → P(A, C,U), such that [ϕ|x]B is obtained by replacing every free
occurrence of x in the formula B by the pre-derivation ϕ. Given A, C and
U , the set of actual substitutions is denoted by Σ(A, C,U); actual substitu-
tions are denoted by π, ρ, σ and τ , and so on, and the empty substitution is
denoted by ϵ (the same as for explicit substitutions).

Note that the general case of application of actual substitutions of an pre-
derivation into an pre-derivation is not defined. That would involve dealing
with negation in a non-trivial way and is the subject of current research. The
notion above suffices for the present work.

Example 2.2.2. The actual substitution of a formula C for the variable x in
the pre-derivation ψ1 in Example 2.1.2 is as follows:

[C|x]

a

a ∨ x
∧ ⟨b ∧ u

b

∣∣∣∣∣y⟩ (y ∧ y)

:::::::::::::::::::::::::

(a ∨ x) ∧ (b ∧ b)
(a ∨ b) ∨ (x ∨ b)

≡

a

a ∨ C
∧ ⟨b ∧ u

b

∣∣∣∣∣y⟩ (y ∧ y)

:::::::::::::::::::::::::

(a ∨ C) ∧ (b ∧ b)
(a ∨ b) ∨ (C ∨ b)

.

Example 2.2.3. The actual substitution of a pre-derivation

x

y
∧ a

:::::::

b

for the

19

variable x in a formula (x ∧ x) is as follows:
x

y
∧ a

:::::::

b

∣∣∣∣∣∣∣∣x
(x ∧ x) ≡

x

y
∧ a

:::::::

b

∧
x

y
∧ a

:::::::

b

.

Definition 2.2.4. The size |ϕ| of a pre-derivation ϕ is the number of oc-
currences of variables, units and atoms appearing in it, not counting the
substitution variables in explicit substitution terms. i.e., |⟨ϕ|x⟩ψ| = |ϕ|+|ψ|.

Example 2.2.5. The size of the derivation ϕ1 in Example 2.1.2 is 16.

In this thesis, we define an equivalence relation on formulae based on
‘flat expansion’, which is the application of explicit substitutions as actual
substitutions. Since applying substitutions normally increases the size of
derivations, we show that there is a measure that decreases after such appli-
cations. We call it the ‘rank’ of a derivation and define it in the following
way.

Definition 2.2.6. Given a pre-derivation ϕ, we associate a natural number
called the substitution degree to each variable occurrence in ϕ; we denote the
association of substitution degree d to the variable occurrence x in ϕ as in
ϕ ≡ ϕ{xd}. We assign substitution degrees this way:

1. Set a counter d := 0; assign the substitution degree 0 to all the free
variables in ϕ; set the multiset R := ∅+, the empty multiset.

2. Set d := d + 1; for every explicit substitution term ⟨ψ|x⟩χ appearing
in ϕ such that all the variable occurrences in ψ have been assigned a
substitution degree, assign the substitution degree d to the substitution
variable x in ⟨ψ|x⟩ and to all the free occurrences of x in χ; set R := R⊎
{d}+, the disjoint union of R and {d}; repeat Step 2 until a substitution
degree has been assigned to all the variable occurrences in ϕ.

The multiset R so obtained is called the rank of ϕ and is denoted by r ϕ.

Example 2.2.7. The formula

⟨⟨x α y|z⟩((x α z) β z)|w⟩((x α w) β w)

is progressively annotated with substitution degrees as follows:

20

1. ⟨⟨x0 α y0|z⟩((x0 α z) β z)|w⟩((x0 α w) β w)

2. ⟨⟨x0 α y0|z1⟩((x0 α z1) β z1)|w⟩((x0 α w) β w)

3. ⟨⟨x0 α y0|z1⟩((x0 α z1) β z1)|w2⟩((x0 α w2) β w2)

resulting in the rank {1, 2}+.

Example 2.2.8. The formula

⟨w|x⟩ ⟨x ∧ w|y⟩ ⟨x ∧ x|z⟩(x ∧ (y ∨ z))

is progressively annotated with substitution degrees as follows:

1. ⟨w0|x⟩ ⟨x ∧ w0|y⟩ ⟨x ∧ x|z⟩(x ∧ (y ∨ z))

2. ⟨w0|x1⟩ ⟨x1 ∧ w0|y⟩ ⟨x1 ∧ x1|z⟩(x1 ∧ (y ∨ z))

3. ⟨w0|x1⟩ ⟨x1 ∧ w0|y2⟩ ⟨x1 ∧ x1|z2⟩(x1 ∧ (y2 ∨ z2))

resulting in the rank {1, 2, 2}+.

Remark 2.2.9. Each explicit substitution term ⟨ψ
∣∣xd⟩ in a pre-derivation has

substitution degree d. Intuitively, we can understand this substitution degree
as corresponding to the longest chain of explicit substitutions which apply
to the variable x. The rank of a pre-derivation is, therefore, a measure of
the explicit substitutions and their depth, and can be used as an induction
measure.

Proposition 2.2.10. For any derivation context ϕ{ }, formula A and pre-
derivation ψ, we have that r ϕ{[A|x]ψ} < r ϕ{⟨A|x⟩ψ} and r ϕ{[ψ|x]A} <
r ϕ{⟨ψ|x⟩A} for the multiset ordering relation <.

Proof. Removing an explicit substitution term ⟨A|x⟩ and applying it has two
effects on the rank, both related to Step 2 in Definition 2.2.6. Let d be the
substitution degree associated with ⟨A|x⟩ when Step 2 is applied to it:

• d is replaced in the rank by the elements of a multiset of lower degrees
than d, associated with multiple copies of the explicit substitution terms
contained in A – this multiset might be empty;

• the explicit substitution terms with variables bound by ⟨A|x⟩, and those
bound by them and so on, do not get higher degrees – and might get
lower degrees – after ⟨A|x⟩ is removed.

21

A similar argument works for a substitution term ⟨ψ|x⟩.

Example 2.2.11. In the formula of Example 2.2.7 there appear two substitu-
tion terms . They can be turned into actual substitutions in two ways:

[⟨x α y|z⟩((x α z) β z)|w]((x α w) β w)

≡ ((x0 α ⟨x0 α y0
∣∣z1⟩((x0 α z1) β z1)) β ⟨x0 α y0

∣∣z1⟩((x0 α z1) β z1))
whose rank is {1, 1}+, and

⟨[x α y|z]((x α z) β z)|w⟩((x α w) β w)

≡ ⟨(x0 α (x0 α y0)) β (x0 α y0)
∣∣w1⟩((x0 α w1) β w1)

whose rank is {1}+. Each possible reduction therefore reduces the rank of
the formula.

Reducing either again will result in

(x0 α ((x0 α (x0 α y0)) β (x0 α y0))) β ((x0 α (x0 α y0)) β (x0 α y0))

whose rank is ∅+.

2.3 Composition by Expansion

In this section we give a correctness criterion on composition by expansion
for pre-derivations.

Definition 2.3.1. Given a formula A, we call the formula flA the flat ex-
pansion of A if all the explicit substitution terms ⟨C|x⟩D appearing in A are
applied via actual substitutions [C|x]D, and flA is the (unique) formula so
obtained.

Remark 2.3.2. The uniqueness of the flat expansion can be seen by observing
that there are no critical pairs. For example, consider a formula ⟨A|x⟩ ⟨B|y⟩C
with two redexes. Applying the substitution ⟨A|x⟩ first results in the reduc-
tion

⟨A|x⟩ ⟨B|y⟩C → ⟨[A|x]B|y⟩ [A|x]C → [[A|x]B|y] [A|x]C ,

and applying the substitution ⟨B|x⟩ first results in the reduction

⟨A|x⟩ ⟨B|y⟩C → ⟨A|x⟩ [B|y]C → [[A|x]B|y] [A|x]C .

22

Example 2.3.3. The flat expansion of

⟨⟨x α y|z⟩((x α z) β z)|w⟩((x α w) β w)

is
(x α ((x α (x α y)) β (x α y))) β ((x α (x α y)) β (x α y)) .

Definition 2.3.4. The two maps premise and conclusion, pr, cn : P(A, C,U) →
F(A, C,U) and the two maps width and height, w, h : P(A, C,U) → N are so
defined:

• If ϕ ∈ F(A, C,U), then pr ϕ ≡ cnϕ ≡ ϕ and w ϕ = |ϕ| and hψ = 0

• If ϕ ≡ α(ψ1, . . . , ψn), then

pr ϕ ≡ α(prψ1, . . . , prψn)

cnϕ ≡ α(cnψ1, . . . , cnψn)

w ϕ = wψ1 + · · · + wψn

hϕ = max(hψ1, . . . , hψn)

• If ϕ ≡ ⟨ψ|x⟩χ, then
pr ϕ ≡ ⟨prψ|x⟩ prχ
cnϕ ≡ ⟨cnψ|x⟩ cnχ
w ϕ = wψ + wχ

hϕ = max(hψ, hχ)

• if ϕ ≡
ψ

χ
or ϕ ≡

ψ
::

χ
, then

pr ϕ ≡ prψ

cnϕ ≡ cnχ

w ϕ = max(wψ,wχ)

hϕ = hψ + hχ+ 1

The set of correct pre-derivations P(A, C,U) contains all and only the pre-

derivations of P(A, C,U) where for each term
ψ
::

χ
appearing in them fl cnψ ≡

fl prχ. Henceforth, unless otherwise specified, we will use pre-derivation to
mean correct pre-derivation.

23

Example 2.3.5. The example on the left is not a correct pre-derivation, be-
cause the composition is not between two pre-derivations; the pre-derivation
on the right is correct (assuming that y does not occur free in A{x}):

⟨B|y⟩ ⟨C{y}|x⟩
:::::::::::::::

⟨C{B}|x⟩
A{x}

⟨B|y⟩ ⟨C{y}|x⟩A{x}
:::::::::::::::::::::

⟨C{B}|x⟩A{x}
.

For simplicity, our formalism is not equipped with a notion of beta-

reduction. The correctness of an instance
ϕ
::

ψ
of composition by expansion is

defined only by the identity of fl cnϕ and fl prψ. In order to use this formal-
ism as a basis for proof systems, we require that composition by expansion
can be decided in polynomial time; we therefore give the following method
for checking the identity of the flat expansions of two formulae, which treats
formulae as term graphs as in [29] and adapts the algorithm for linear unifi-
cation given in [28].

Proposition 2.3.6. Given formulae A and B, the identity flA ≡ flB can
be decided in linear time on |A| + |B| by comparing the flat expansions of A
and B without actually performing the substitutions. Let us call a normal
representation of A a formula

C ≡ ⟨Cn|xn⟩ · · · ⟨C1|x1⟩C0

such that, for n ≥ 0, x1, . . . , xn are fresh, distinct variables, C0, . . . , Cn
are flat, C0 /∈ {x1, . . . , xn}, each of C1, . . . , Cn contains one and only one
connective and flC ≡ flA; C can be obtained from A in linear time on |A|.
Let

D ≡ ⟨Dm|ym⟩ · · · ⟨D1|y1⟩D0

be a normal representation of B; we can check flA ≡ flB by the following

24

recursive procedure invoked as p(C0, D0):

Procedure p(Ci, Dj)

1. if Ci ≡ Dj, return success;

2. otherwise, if Ci ≡ xih ∈ {x1, . . . , xn} and Dj ≡ yjh ∈ {y1, . . . , ym} and
p(Cih , Djh) succeeds, then return success;

3. otherwise, if Ci ≡ α(C1
i , . . . , C

l
i) and Dj ≡ α(D1

j , . . . , D
l
j) and, for

1 ≤ h ≤ l, p(Ch
i , D

h
j) succeeds, then return success;

4. otherwise, return failure.

Proof. To convert the formula A into its normal representation is linear: we
transform every subformula A1 α A2 to ⟨A1|z⟩ ⟨A2|z′⟩(z α z′); the number
of such transformations is bounded by the number of connectives in A. To
satisfy the constraint that each Ci, i > 1 contains exactly one connective,
explicit substitutions of the form ⟨A|x⟩ for A ∈ U ∪ V are applied without
increasing the size of the formula.

Where we are comparing formulae such as ⟨Ci|xi⟩K{xi} . . . {xi} and
⟨Dj|yj⟩K{yj} . . . {yj}, the procedure p(Ci, Dj) need only be performed once,
so the comparison is linear on the size of the original formulae.

2.4 Synchronal Composition

Definition 2.4.1. Let ψ and χ be two pre-derivations such that cnψ ≡ prχ.
We define a pre-derivation called the synchronal composition of ψ and χ,
denoted as

ψ
...
χ

;

we do so by structural induction, as follows:

1. if ψ is a formula, then
ψ
...
χ

≡ χ; similarly, if χ is a formula, then
ψ
...
χ

≡ ψ;

2. if ψ ≡ α(ψ1, . . . , ψn) and χ ≡ α(χ1, . . . , χn), then
ψ
...
χ

≡ α

(
ψ1....
χ1

, . . . ,
ψn....
χn

)
;

25

3. if ψ ≡ ⟨ψ1|x⟩ψ2 and χ ≡ ⟨χ1|x⟩χ2, then
ψ
...
χ

≡ ⟨ ψ1....
χ1

∣∣∣∣∣x⟩ ψ2....
χ2

;

4. if ψ ≡
ψ1
::

ψ2

, then
ψ
...
χ

≡

ψ1
:::

ψ2....
χ

; similarly, if χ ≡
χ1
::

χ2

, then
ψ
...
χ

≡
ψ
...
χ1
:::

χ2

;

5. if ψ ≡
ψ1

ψ2

, then
ψ
...
χ

≡

ψ1

ψ2....
χ

; similarly, if χ ≡
χ1

χ2

, then
ψ
...
χ

≡
ψ
...
χ1

χ2

.

Remark 2.4.2. Note that the dotted line is a composition operator and is not
part of the language. As is shown in [20], the synchronal composition of two
pre-derivations is unique because we can interpret it as a constructor subject
to term rewriting (in the direction suggested by the above definition). That
rewriting relation is then easily proved to be terminating and confluent, under
the assumption that compositions by expansion and inference are associative.
Moreover, synchronal composition is associative, and therefore we omit many
boxes in the rest of the thesis.

Remark 2.4.3. Given A, C and U , any set of pre-derivations P(A, C,U) is
closed under synchronal composition and composition by expansion. If two
pre-derivations can be composed synchronally, they can be composed by
expansion.

Definition 2.4.4. A section of a pre-derivation ϕ is any formula A such that

ϕ ≡
ψ
...
A
...
χ

,

for some pre-derivations ψ and χ; in the above derivation, each section of ψ
is said to be above each section of χ and each section of χ is said to be below
each section of ψ.

Example 2.4.5. This is how we can extract a section ⟨B α D|x⟩(x β x) above

26

a composition by expansion in the derivation on the left:

⟨ AB α
C

D

∣∣∣∣∣∣x⟩ (x β x)

:::::::::::::::::::::

(B α D) β (B α D)

≡
⟨ AB α

C

D

∣∣∣∣∣∣x⟩ (x β x)

...................................
⟨B α D|x⟩ (x β x)
............................
⟨B α D|x⟩ (x β x)

:::::::::::::::::::

(B α D) β (B α D)

.

2.5 Open Deduction with Substitution

Definition 2.5.1. We define two formalisms :

• (propositional) open deduction with substitution, denoted by ODS, is
the union of all sets of pre-derivations P(A, C,U), for all sets of atoms
A, connectives C and units U ;

• (propositional) open deduction, denoted by OD, is the subset of ODS
that contains all pre-derivations where no explicit substitutions and no
compositions by expansion appear.

A generic formalism is denoted by O.

27

Chapter 3

Proof Systems

In this chapter we define the proof systems which we investigate and use
in this work. In our design of proof systems, we are particularly motivated
by the pursuit of linearity and avoidance of negation, which result in proof
systems that interact with explicit substitution in a straightforward way.

The main logic of interest in this work is propositional classical logic, and
we will introduce and compare multiple systems for this logic: those sys-
tems with and without unit-equality inference steps, explicit substitutions,
atoms-as-connectives, and the mix rule. We focus on propositional classi-
cal logic because it best allows us to assess the effect on the size of proofs
from introducing explicit substitutions and eliminating unit-equality infer-
ence steps, by comparison in Chapter 7 with the benchmark class of systems
substitution Frege. Systems for propositional classical logic are also suffi-
ciently symmetric that in Chapter 5 we are able to prove a technical result,
the Eversion Lemma, with a high degree of generality. Some results, such as
the completeness of the system obtained by eliminating unit-equality infer-
ence steps in Chapter 6, would be possible to show for multiplicative linear
logic with units (albeit without the complexity result); we draw comparisons
where appropriate and refer to the system SAMLLS in [2].

3.1 Preliminaries

Definition 3.1.1. Given A, C and U , a proof system is a finite set of relations
on F(A, C,U), each of which is called an inference rule and is decidable in
polynomial time on the size of its arguments. We denote inference rules with

28

the letter r and various other notations. Given a proof system S, an inference
step such that (cnψ, prχ) ∈ r ∈ S, for some rule r, is called an instance of
r and is denoted as

ψ
r
χ

.

Given a formalism O and a proof system S built on A, C and U , we say that
a pre-derivation ϕ in P(A, C,U) and in O is a derivation in S-O if every
inference step in ϕ is an instance of some rule of S; one way to denote such
a derivation is

A
ϕ S-O
B

,

where A and B are the premise and conclusion of ϕ. The set of derivations
in S-O is denoted as DS-O. When it is clear from the context, indications of
formalism might be omitted. Sometimes, a couple S-O will be referred to as
a proof system.

Remark 3.1.2. If a derivation is in S-OD then it is in S-ODS.

Example 3.1.3. Consider a proof system S with rules r1, r2 such that (A,B) ∈
r1 and (B α B,C) ∈ r2, and consider the pre-derivations

ϕ1 ≡
A

r1
B

α
A

r1
B

r2
C

and ϕ2 ≡
⟨ A
r1
B

∣∣∣∣∣x⟩ (x α x)

::::::::::::::::

B α B
r2

C

.

Then ϕ1 is a derivation in both S-OD and S-ODS and ϕ2 is a derivation
in S-ODS but not in S-OD.

In specifying separately the formalism and the proof system, we are draw-
ing a distinction between two aspects of proofs that would otherwise be con-
flated: the mechanisms for composition and the set of inferences. In Frege
and Gentzen systems this is not so easily done, because the rules and the
composition mechanisms are given together. This distinction allows us to
reason generally about derivations, without being committed to a particular
proof system. We put composition by expansion at the level of the formalism
rather than introducing a new rule to the proof system because that does
not depend on a particular logical system.

29

Remark 3.1.4. For every S and O, the set of derivations DS-O is closed
under synchronal composition and, if O = ODS, also under composition
by expansion.

In many cases, proof systems are equipped with equivalence relations on
formulae. Those equivalences can be viewed as special cases of ‘invertible’
inference rules, that is, rules that are valid in both directions, typically rep-
resenting semantic equivalence. In this thesis, equivalence relations allow us
to define classes of structurally equivalent derivations and, at the same time,
generate canonical derivations that represent those classes. For these reasons,
we introduce some special notation, in particular, to represent inference rules
and inference steps.

Notation 3.1.5. If A and B belong to a given set of formulae F(A, C,U), and
unless specified differently, the notation

A
r
B

stands for r = { (σA, σB) | σ ∈ Σ(A, C,U) } .

If an equivalence relation = is defined on formulae, the notation

A
r
B

stands for r =

{
(A′, B′)

∣∣∣∣ A′ = σA, B′ = σB
σ ∈ Σ(A, C,U)

}
.

Inference steps can be decorated by a label r denoting the rule r of which
they are an instance, and, in case the rule was defined via =, the double line
is sometimes used, too.

This notation works well for propositional inference rules and allows us
to use for their definition the same notion of substitution that we use for
proof systems. The variables in the rules are object-level variables (x, y,
. . .) rather than meta-level ones (A, B, . . .). It does not work equally well
for rules with quantifiers because, for them, variable capture might become
an issue. However, we only mention quantifier rules informally in this thesis
and, for them, we use a more standard, informal notation.

The use of inference steps modulo equality subsumes the invertible in-
ference steps and will be instrumental in comparing the structure of proof
systems with explicit substitutions and those with rules for unit equations,
which we will do in Chapter 6.

30

Example 3.1.6. Suppose that we have a proof system S containing a medial

rule modulo equality
(w ∧ x) ∨ (y ∧ z)

m
(w ∨ y) ∧ (x ∨ z)

and invertible rules x ∧ t = x and

x∨ f = x. Then the inference step
A ∨ (f ∧D)

m
A ∧ (t ∨D)

is an instance of the medial

rule modulo equality. In a system without rules modulo equality, this would
be expanded as

A
=
A ∧ t

∨ (f ∧D)

m

A ∨ f
=

A
∧ (t ∨D)

.

3.2 Standard Proof Systems

The deep-inference methodology is motivated in part by the pursuit of lo-
cality, meaning that we want to be able to check inference steps in constant
time. In order to achieve this, rules should be as ‘small’ as possible. This has
been achieved in a natural way by giving proof systems all of whose rules are
either linear or atomic [11, 9, 6, 7]. In particular, locality benefits the proof
theory of classical logic via the normalisation mechanisms employing ‘atomic
flows’ [4, 21, 19]. In this work, we develop the idea that a more extreme form
of linearity, in which we require not only linearity on the atoms but also the
units, can subsume the need for atomic rules and lead to proof systems with
good properties, in particular a better form of closure under substitution.

We therefore introduce the standard systems for classical logic in deep
inference, including a variant with inference steps defined via an equality
relation on formulae.

Definition 3.2.1. Given A = {a, b, c, . . . }, C = C2 = {∨,∧} and U = {f, t},
we define the proof systems SKSg, SKSg=, SKS and SKS=. We assume that
there is an involution ·̄ on formulae that realises De Morgan’s laws, i.e.,
A ∨B ≡ Ā ∧ B̄ and A ∧B ≡ Ā ∨ B̄. The equality relation = on formulae is
defined by the equalities in Figure 3.1, closed by reflexivity, symmetry and
transitivity, and where K{ } is any context. SKSg is the set of inference
rules in Figure 3.2 and SKSg= is the set of those in Figure 3.3. Systems SKS
and SKS= are obtained from SKSg and SKSg=, respectively, by restricting

31

x ∨ y = y ∨ x x ∨ f = x

x ∧ y = y ∧ x x ∧ t = x

x ∨ (y ∨ z) = (x ∨ y) ∨ z t ∨ t = t

x ∧ (y ∧ z) = (x ∧ y) ∧ z f ∧ f = f

if A = B then K{A} = K{B}

Figure 3.1: Equivalence relation = on the formulae of systems SKSg, SKS,
SKSg= and SKS=.

x ∧ x̄
i

f

x
w

t

x
c
x ∧ x

(x ∨ y) ∧ (z ∧ w)
sw

(x ∧ z) ∨ (y ∧ w)

t
i
x ∨ x̄

f
w
x

x ∨ x
c

x

(x ∨ y) ∧ (z ∨ w)
sw

(x ∧ z) ∨ (y ∨ w)

(x ∧ y) ∨ (z ∧ w)
m

(x ∨ z) ∧ (y ∨ w)
=

Figure 3.2: Inference rules of systems SKSg and SKS, where the inference
rule = is defined in Figure 3.1.

to variables, atoms and units the formulae that are substituted into x and x̄
in the rules i, i, w, w, c and c. In any of these proof systems, a proof is a
derivation whose premise is t.

Normally, there are no variables in standard derivations with no substi-
tutions, but their presence would not cause any issues because they can be
treated as atoms.

Remark 3.2.2. We present the switch here as two distinct rules, sw and sw.

x ∧ x̄
i

f

x
w

t

x
c
x ∧ x

(x ∨ y) ∧ (z ∧ w)
sw

(x ∧ z) ∨ (y ∧ w)

t
i
x ∨ x̄

f
w
x

x ∨ x
c

x

(x ∨ y) ∧ (z ∨ w)
sw

(x ∧ z) ∨ (y ∨ w)

(x ∧ y) ∨ (z ∧ w)
m

(x ∨ z) ∧ (y ∨ w)
=

Figure 3.3: Inference rules of systems SKSg= and SKS=, where the inference
rule = is defined in Figure 3.1.

32

These could be collapsed into a single rule

x ∧ (y ∨ z)

(x ∧ y) ∨ z
,

from which sw and sw can be recovered via unit equations. We present the
switch as two rules here for compatibility with its presentation in subatomic
systems.

Example 3.2.3. The following two derivations have the same premise and
conclusion, both are in SKS=-OD but the left one is also in SKS-OD while
the right one is not:

b
=

t
i
ā ∨ a

∧
b

=
0 ∨ b

m
(ā ∧ 0) ∨ (a ∨ b)

and

b
=

t
i
ā ∨ a

∧ b
m

(ā ∧ 0) ∨ (a ∨ b)

.

Note that
t

i
ā ∨ a

is an instance of
t

i
x ∨ x̄

where ā is substituted into x and

we apply ¯̄a ≡ a.

3.3 Subatomic Proof Systems

The rules in systems SKSg, SKSg=, SKS and SKS= are given in three parts:
the so-called structural rules i, w, c and their duals; the equality rule express-
ing the equalities in Figure 3.1; and the logical rules sw, sw, and m, which
share a common shape. This shape is characteristic of deep-inference logical
systems.

By considering the atoms as self-dual, non-commutative binary connec-
tives, whose arguments correspond to the atom’s possible truth values, we
can also give the structural rules as instances of the same linear shape for
a wide range of logical systems [3]. The uniformity and linearity of the rule
shape has the benefit of simplifying normalisation arguments because it re-
duces the possibilities for how inference steps interact with one another in a
derivation.

33

In this rule shape, there is no duplication or negation of the arguments;
this is recovered via an interpretation map back to the language with stan-
dard atoms. For example, 0 a 1 is interpreted as a positive instance of the
atom a and 1a 0 is interpreted as a negative instance ā. In addition, if both
arguments of an atom are equal then that argument is the interpretation, so
that 0a 0 is interpreted as f and 1a 1 is interpreted as t. Then the inference
steps

(0 a 1) ∨ (0 a 1)

(0 ∨ 0) a (1 ∨ 1)
and

(0 a 1) ∧ (1 a 0)

(0 ∧ 1) a (1 ∧ 0)

are instances of the rule shape, corresponding, via the unit equalities in

Figure 3.1, respectively to
a ∨ a

c
a

, which is an instance of contraction in Sys-

tem SKS, and
a ∧ ā

i
f

, a cut. In [2, 3], this interpretation is formally defined

and it is shown that cut elimination and other normalisations can be lifted
from the subatomic proof systems to the standard ones. Such an interpre-
tation is an example of ‘abstraction’, which is a more general concept than
interpretation, and which we define in Chapter 4. The particular abstrac-
tion that we define in this thesis allows us to go further and design subatomic
proof systems that do not possess unit equalities but still retain the structure
of standard systems concerning normalisation.

Definition 3.3.1. Let C2 be a set of binary connectives and let the two maps
down-saturation and up-saturation be defined, respectively, as q· : C2 → C2
and p· : C2 → C2, such that, for α ∈ C2,

q

qα = q

pα = qα and p

pα = p

qα = pα .

Given atoms A and units U , the proof systems

DT(A, C2, q· , p· ,U) and rDT(A, C2, q· , p· ,U)

consist of the rules in Figure 3.4. We denote DT(A, C2, q· , p· ,U) as DT and
rDT(A, C2, q· , p· ,U) as rDT when the language constructors are not important
or are clear from the context. We will sometimes use the square connectives
⊓,⊔ for a pair of connectives pα, qα to improve readability.

The system rDT realises a ‘rigid’ form of inference and the system DT
realises a ‘lax’ one, and the distinction between these will be made clear in

34

DT x pα y
pα
x α y

x α y
qα
x qα y

rDT
(x pα y) β (z α w)

pαβ
(x β z) α (y β w)

(x α y) β (z α w)
qβα

(x qβ z) α (y β w)

(x α y) β (z pα w)
βpα

(x β z) α (y β w)

(x α y) β (z α w)
αqβ

(x β z) α (y qβ w)

Figure 3.4: Systems rDT and DT.

Chapter 5. For the technical purposes of this thesis, we could ignore the rigid
system and only work with the lax one. However, there are three reasons to
develop the theory of both systems:

• the properties of both systems can be proved at the same time with no
extra effort;

• the rigid system, rDT, is slightly simpler and has implicitly been adopted
already for subatomic logics;

• the rigid and lax forms of inference generate different systems with
unary connectives (modalities and quantifiers) that can have different
uses in different logics, and this thesis provides a foundation for them.

Remark 3.3.2. In the subatomic systems of this thesis, sets of connectives
closed by saturation and negation coincide, i.e., {α, qα, pα} = {α, ᾱ} for
any connective α. Indeed, for example, {∨, q∨, p∨} = {∨, ∨̄} = {∨,∧} and
{a, qa, pa} = {a, ā} = {a}. However, this is not a consequence of the defini-
tion and there are there could be proof systems where this does not happen.

Decision trees are binary trees in which each interior node is labelled
by an atom and each leaf is labelled by a unit or variable [38]. We read the
decision tree represented by AaB as ‘if a then B, else A’. In [5], the standard
language of propositional classical logic is augmented by decision trees. This
way, we obtain a proof system, called DTsa in [5] and rKDT in this thesis,
containing exactly those rules that are generated by the subatomic rule shape
of rDT, with good normalisation properties and efficient derivations. That
system realises a conservative extension of standard propositional logic. Even
though we introduce new rules to a proof system for classical propositional

35

(x pα y) β (z α w)
pαβ

(x β z) α (y β w)

(x α y) β (z pα w)
βpα

(x β z) α (y β w)

(x α y) β (z α w)
qβα

(x qβ z) α (y β w)

(x α y) β (z α w)
αqβ

(x β z) α (y qβ w)

where α, β ∈ {∨,∧,a, b, . . . }

and q∨ = q∧ = ∨ qa = pa = a

p∨ = p∧ = ∧ qb = pb = b

...

Figure 3.5: System rKDT.

logic and extend its semantic interpretation, the complexity of the proof
system is reduced, in particular concerning its normalisation theory, because
of the uniformity of rDT.

The next definition introduces five proof systems for propositional classi-
cal logic with decision trees that specialise rDT and DT. Four of them differ
for two characteristics in all the possible combinations: rigidity vs. laxness
and the presence vs. the absence of inference rules for equality. The fifth
system operates inference modulo equality and contains all the derivations
of all the other four systems: we use it to define an abstraction map, in Chap-
ter 4, that allows us to state our main result on strict linearity. All these
systems share a common language and all the inference rules that control
the interactions between connectives. When there is no reason to deal with
the differences, we collectively refer to all five systems as KDT, for classical
decision trees.

Definition 3.3.3. Given A = ∅, C = C2 = {∨,∧,a, b, c, . . . } and U = {0, 1},
we define the proof system rKDT (for rigid classical decision trees), which
is a special case of rDT, in Figure 3.5. Connectives a, b, c, . . . are called
atom connectives. System KEq consists of the inference rules =is defined
in Figure 3.6. We then define rKDTEq = rKDT ∪ KEq. Systems KDT and

36

x
=1

x ∨ 0

x ∨ 0
=2

x

x
=3

0 ∨ x
0 ∨ x

=4

x

0
=5

0 α 0

0 α 0
=6

0
where α ∈ {∧,a, b, c, . . . }

x
=7

x ∧ 1

x ∧ 1
=8

x

x
=9

1 ∧ x
1 ∧ x

=10

x

1
=11

1 β 1

1 β 1
=12

1
where β ∈ {∨,a, b, c, . . . }

Figure 3.6: System KEq.

(x pα y) β (z α w)
pαβ

(x β z) α (y β w)

(x α y) β (z pα w)
βpα

(x β z) α (y β w)

(x α y) β (z α w)
qβα

(x qβ z) α (y β w)

(x α y) β (z α w)
αqβ

(x β z) α (y qβ w)

where

α, β ∈ {∨,∧,a, b, c, . . . }

q∨ = q∧ = ∨ qa = pa = a

p∨ = p∧ = ∧ qb = pb = b

...

x ∧ y
q∧
x ∨ y

= equivalence relation defined by

x ∨ 0 = 0 ∨ x = x 0 γ 0 = 0

x ∧ 1 = 1 ∧ x = x 1 δ 1 = 1
where

γ ∈ {∧,a, b, c, . . . }

δ ∈ {∨,a, b, c, . . . }

⟨A|x⟩B = [A|x]B

if A = B then K{A} = K{B}

Figure 3.7: System KDTEq=.

37

KDTEq are the proof systems obtained by adding the mix rule

x ∧ y
q∧
x ∨ y

to Systems rKDT and rKDTEq, respectively. System KDTEq= is defined in
Figure 3.7, where = is an equivalence relation, i.e., it is closed by reflexivity,
symmetry and transitivity. In these systems, a proof is a derivation whose
premise is equal to 1 by the equality relation =.

Remark 3.3.4. We have the following inclusions between the proof systems
for classical logic:

DrKDT-O

DKDT-O⊂

DrKDTEq-O
⊂

⊂
DKDTEq-O

⊂
DKDTEq=-O⊂ ,

where O ∈ {OD,ODS}.

Remark 3.3.5. No free variables appear in proofs because if a free variable
appears anywhere in a proof, it appears in its premise, but a formula with a
free variable cannot be equal to 1.

Remark 3.3.6. We can check the equality A = B in linear time, therefore
KDTEq= is indeed a proof system. The check can be performed by the same
procedure of Remark 2.3.6, where the notion of normal representation is
modified by adding the following condition: in the normal representation
⟨Cn|xn⟩ · · · ⟨C1|x1⟩x1 of a formula, no Ci matches the left side of a unit
equality in Figure 3.7.

The rules qα and pα in Figure 3.4, when specialised to the language of KDT,
are sound for classical logic, because x ∧ y entails x ∨ y. It is also sound for
other logics, such as, for example, linear logic with mix [17] (because x� y
entails xO y) and BV [18] (because x� y entails x ◁ y, which in turn entails
xO y). These rules do not contribute to the completeness of KDTEq because
the rules obtained from rDT are (more than) sufficient. However, it allows
us to obtain derivations that behave well under the operation of ‘projection’,
which we need in Chapter 8 to prove cut elimination, and does not affect any
of the other results in this thesis. Moreover, they fits a very general scheme
for proof systems that we define in Chapter 5 and make the difference between
rKDT (the ‘rigid’ version, whence the ‘r’) and KDT (the ‘lax’ version).

38

Proposition 3.3.7. Systems rKDTEq, KDTEq and KDTEq= are sound and
complete for propositional classical logic with decision trees, as shown by C.
Barrett and Guglielmi in [5].

Remark 3.3.8. Standard derivations can be translated to subatomic in a
straightforward way. We include here the translation from SKS-OD to KDTEq-OD,
which we call sa.

• If ϕ ∈ V then saϕ ≡ ϕ

• If ϕ ≡ t then saϕ ≡ 1; and if ϕ ≡ f then saϕ ≡ 0.

• If ϕ ≡ a then saϕ ≡ 0 a 1

• If ϕ ≡ ā then saϕ ≡ 1 a 0

• If ϕ ≡ (ψ α χ), for α ∈ {∧,∨} then saϕ ≡ (saψ α saχ)

• If ϕ ≡

ψ
........
a ∨ a

c
a
...
χ

then saϕ ≡

saψ
..........................
(0 a 1) ∨ (0 a 1)

aq∨
0 ∨ 0

=
0

a
1 ∨ 1

=
1

.............................
saχ

; similarly for c.

• If ϕ ≡

ψ
...
1

i
a ∨ ā
........
χ

then saϕ ≡

saψ
......
1

=

1
=
0 ∨ 1

a
1

=
1 ∨ 0

∨qa
(0 a 1) ∨ (1 a 0)
..........................

saχ

; similarly for i.

39

• If ϕ ≡

ψ
...
0

w
a
...
χ

then saϕ ≡

saψ
.....................

0 a

0
=
0 ∧ 1

q∧
0 ∨ 1

=
1

.....................
saχ

; similarly for w.

• If ϕ ≡

ψ
..........
A ∨B

=
B ∨ A
..........
χ

then saϕ ≡

saψ
.......................................

saA
=
0 ∨ saA

∨
saB

=
saB ∨ 0

∨q∨
0 ∨ saB

=
saB

∨
saA ∨ 0

=
saA

.......................................
saχ

; similarly for

A ∧B = B ∧ A.

• If ϕ ≡

ψ
....................
A ∨ (B ∨ C)

=
(A ∨B) ∨ C
....................

χ

then saϕ ≡

saψ
...

saA
=
saA ∨ 0

∨ (saB ∨ saC)

∨q∨

(saA ∨ saB) ∨
0 ∨ saC

=
saC

...
saχ

; sim-

ilarly for A ∧ (B ∧ C) = (A ∧B) ∧ C.

• If ϕ ≡
ψ

=
χ

, where = is an instance of one of the equalities A ∨ f = A,

A ∧ t = A, t ∨ t = t, or f ∧ f = f, then saϕ ≡
saψ

=
saχ

.

We say that derivations in rKDT-OD and KDT-OD are strictly linear
because each inference step is linear (contrary to, for example, derivations

40

with unit-equality steps). By extension, we also call derivations in rKDT-ODS
and KDT-ODS strictly linear. If explicit substitutions are present, we do
not have the usual linearity in the sense of term rewriting. However, we
can consider substitutions as simply a notation to compress the derivations.
Substitutions do not interfere with the logic of the derivation and do not affect
its normalisation properties, as we show in the rest of the thesis. Therefore
considering those derivations strictly linear is justified. We also call strictly
linear the proof systems rKDT and KDT themselves.

Notation 3.3.9. We denote subatomic formulae with boldface letters A, B,
C,

A more complete treatment of the subatomic logic system for proposi-
tional classical logic endowed with decision trees and its proof theory can be
found in [5], where the proof system rKDTEq is called DTsa. DTsa does not
contain variables, while KDTEq and its variants do because we use them in
a formalism with substitutions, i.e., ODS and further generalisations of it.
This is not a substantial difference from the point of view of the normali-
sation and complexity properties of the systems with equality because the
inference rules are the same. There might be differences in the semantics, of
course, but the natural interpretations only give us conservative extensions
of propositional classical logic with decision trees.

Remark 3.3.10. The naming scheme for rules in subatomic logic systems is
designed to convey three pieces of information: which two connectives are
concerned, and in which corner the rule is saturated. For example, the name
αpβ tells us that the connectives are α and β, and that the top-right instance
of β is saturated up, so that we know the rule is

(w β x) α (y pβ z)
αpβ

(w α y) β (x α z)
.

The name q∧a tells us that the connectives are ∧ and a, and that the bottom-
left instance of ∧ is saturated down, so that we know the rule is

(w a x) ∧ (y a z)
q∧a

(w ∨ y) a (x ∧ z)
.

Therefore, the name aq∧ is not equivalent to a∨, which is indeed not a name,
even though q∧ = ∨, because in rule names p and q are considered as decora-
tions. This naming scheme leads to collisions; for example, ∧q∨ and ∨p∧ both

41

denote the medial rule
(w ∧ x) ∨ (y ∧ z)

(w ∨ y) ∧ (x ∨ z)
.

Remark 3.3.11. The equality relation = of KDTEq= subsumes expansion, in

the sense that flA = A and if
ϕ
::

ψ
is a derivation in KDTEq=, then

ϕ
=
ψ

also

is.

The reason why we make expansion part of the equality relation is that
doing this simplifies the technical treatment of the abstraction map defined
in Chapter 4.

Remark 3.3.12. An inference step might be classified both as a rule step and
an equality step, for example

(A ∧ 1) ∧ (1 ∨ 0)
p∨∧

(A ∧ 1) ∨ (1 ∧ 0)
and

(A ∧ 1) ∧ (1 ∨ 0)
=

(A ∧ 1) ∨ (1 ∧ 0)
.

Notice also that the following inference steps are valid:

A ∧ 1
p∨∧

A ∨ 0
,

A ∧ 1
=
A ∨ 0

and
A ∧ 1

=
A ∨ 0

.

The following two propositions are straightforward.

Proposition 3.3.13. In Systems rKDTEq-ODS, KDTEq-ODS and KDTEq=-ODS,
for every inference rule r and formulae A and B, if (A,B) ∈ r then
(flA, flB) ∈ r.

Proposition 3.3.14. If ⟨A|x⟩B is a formula in KDTEq= such that [A|x]B ̸≡
B and either ⟨A|x⟩B = 0 or ⟨A|x⟩B = 1, then either A = 0 or A = 1.

Note that the above proposition would not be true if there were equalities
of the kind x ∧ 0 = 0.

Definition 3.3.15. The equivalence relation = over derivations of KDTEq=-ODS
is obtained by closing by reflexivity, symmetry and transitivity the following
relations:

• ϕ{A} = ϕ{B} where A = B;

42

• ϕ{ψ} = ϕ

{
C

=
ψ

}
where C = prψ;

• ϕ{ψ} = ϕ

{
ψ

=
C

}
where C = cnψ.

43

Chapter 4

Abstraction and Structural
Equivalence

In this section, we define a notion of abstraction for derivations. An ab-
straction is a map that transforms derivations into derivations and has two
properties:

• normalisation is preserved through the abstraction, and

• all derivations that are mapped by the abstraction to the same deriva-
tion (or a suitable equivalence class) belong to a natural equivalence
class.

In this context, ‘natural’ means that the abstraction captures some property
of independent interest, typically related to normalisation, semantics and
complexity. The idea is illustrated in Figure 4.1, using a permutation of
inference steps as an example of a typical normalisation case in proof theory.
We suppose that we have a set of derivations that we call ‘abstract’, on the
right, whose derivations we can normalise by permuting the inference steps
χ1 and ω1. There exists another set of derivations, which we call ‘concrete’,
on the left, whose derivations contain more information than those in the
abstract set. We want to make sure that normalisation in the abstract set
can be recovered from the concrete set. One reason to do all that is that
normalisation in the concrete set could be simpler, for example, because the
proof system adopted in that set is more regular. Typically, many different
derivations in the concrete set map to the same derivation in the abstract one,
and we want to collect all those concrete derivations in an equivalence class.

44

‘concrete’ abstraction// ‘abstract’

ϕ′
...
χ′
1...
ω′
1...
ψ′

norm. //

abstr.

%%
str. eq.

��

ϕ′
...
ω′
2...
χ′
2...
ψ′

abstr.

%%
str. eq.

��

ϕ
...
χ1...
ω1...
ψ

norm. //

ϕ
...
ω2...
χ2...
ψ

ϕ′′
....
χ′′
1....
ω′′
1....
ψ′′

norm. //

abstr.

99

OO

ϕ′′
....
ω′′
2....
χ′′
2....

ψ′′

abstr.

::

OO

Figure 4.1: Example of an abstraction map (abstr.) from a ‘concrete’ to an
‘abstract’ set of derivations, and the induced structural equivalence (str. eq.),
when normalising derivations by permuting inference steps (norm.).

45

Hopefully, if the abstraction map is well conceived, the induced equivalence,
which we call ‘structural’, is natural.

One example of abstraction is the so-called ‘interpretation’ map from
the subatomic system SAKS (which would be considered ‘concrete’) to SKS
(‘abstract’), studied in [3]. SAKS is a subsystem of KDTEq where atom
connectives cannot be nested and no variables occur. Its interpretation into
SKS consists of mapping subatomic formulae built around atom connectives
into standard atoms, as we have seen already. The same standard atom can
be obtained from infinitely many expressions involving the corresponding
atom connective and boolean expression of units, but that does not make a
difference for normalisation. The induced structural equivalence is natural
from the point of view of the standard interpretation of propositional logic
formulae.

Somewhat similarly, in this thesis, we build an abstraction map that
collapses unit expressions in a subatomic system to their minimal form.
Compared to the interpretations mentioned above, this new map has two
additional features: it flattens certain explicit substitutions and it collapses
vertical equalities when they are identities (see Figure 4.2). The abstract
derivations belong to a subatomic system where inference rules work modulo
equality. This allows us to clarify how the large amount of logical material
injected into derivations to eliminate unit equalities affects neither normalisa-
tion nor complexity at a natural level of abstraction. Concerning semantics,
the abstraction is natural because it preserves logical equivalence.

The notions of abstraction and structural equivalence that we present
in this section are to be considered a first approximation of more general
notions to be developed in the future, alongside the development of the deep-
inference proof theory of first and higher order, classical and non-classical,
logics. However, the specific abstraction map and structural equivalence that
we define in this section are sufficient to prove the results of this work.

4.1 Definitions

As we wrote, an abstraction map aims to respect whatever notion of normali-
sation we might have. This is a vague objective because normalisation can be
any manipulation of derivations – a very broad concept. That said, by look-
ing at the way we compose derivations, we note that horizontal composition
is free and therefore does not represent a problem, but vertical composition is

46

constrained, and that is where we must concentrate our efforts. The vertical
composition of two derivations is constrained in three different ways:

• synchronal composition, by which premise and conclusion match;

• composition by expansion, by which the flat expansions of premise and
conclusion match;

• composition by inference, by which premise and conclusion belong to
an inference rule.

Equivalence relations on formulae, in particular those generated by unit
equalities, affect the linearity of derivations, and are the prime target of
our investigation. Therefore, we cannot hope for a notion of abstraction
that is independent of proof systems. For example, one depending only on
synchronal composition would be too weak; Remark 4.2.8 shows that the
abstraction map in this section would not be possible.

We proceed by first defining what we mean by vertical composition in a
way that is very natural in the context of this thesis but could be modified in
future works. It encompasses all three composition methods outlined above.
Based on vertical composition, we then define the abstraction map.

Definition 4.1.1. Given a proof system S-O, we say that its derivations ψ
and χ can be vertically composed if cnψ ≡ prχ, or if fl cnψ ≡ fl prχ, or if
(cnψ, prχ) belongs to an inference rule of S-O; we denote this by

ψ
S-O ::::

χ
,

where the indication of the proof system will be omitted when clear from the
context.

Definition 4.1.2. Given a proof system S-O, an abstraction in S-O is a
map a : DS-O → DS-O such that, for all derivations ψ and χ:

• a(ψ) ≡ a(a(ψ));

• if
ψ
::::

χ
∈ DS-O then

a(ψ)
::::::::

a(χ)
∈ DS-O;

47

• if ψ and χ can be vertically composed as
ψ
::::

χ
(resp., as

χ
::::

ψ
), for all ψ′

such that a(ψ′) ≡ a(ψ), there exists a χ′ such that:

– a(χ′) ≡ a(χ) and

– χ′ can be vertically composed with ψ′ as
ψ′
::::

χ′ (resp., as
χ′
::::

ψ′).

We say that two abstractions a and a′ are independent if they commute.

We now define structural equivalence. We could define it by using the
identity of derivations as the canonical element of the equivalence class. In
other words, if two derivations, say ϕ and ψ, map to the same, canonical,
derivation, then they are in the equivalence class. This could be done, but
the price to pay would be a high level of technical complexity. We choose a
different method, that, in our case, simplifies matters a lot. We require that
a(ϕ) = a(ψ), i.e., we map ϕ and ψ to the equivalence class generated by the
equality relation on derivations of Definition 3.3.15. This is a natural thing
to do and deals in a very simple way with certain situations; Remark 4.2.8
shows an example illustrating this point. One way of looking at this design
choice is that we add one degree of freedom when defining an abstraction
map.

Definition 4.1.3. Given an abstraction a in S-O, we say that derivations
ψ and χ are structurally equivalent for a if a(ψ) = a(χ), whenever S-O has
an equality =, or if a(ψ) ≡ a(χ), in case S-O has no equality.

Example 4.1.4. A simple abstraction can be defined from derivations in SKSg
to derivations in SKS by reducing inference steps into their so-called atomic
form using the sw, sw and m rules. For example,

t
i
(A ∧B) ∨

(
Ā ∨ B̄

) becomes

t
=

t
i
A ∨ Ā

∨
t

i
B ∨ B̄

sw
(A ∧B) ∨

(
Ā ∨ B̄

) ,

48

and

(A ∧B) ∨ (A ∧B)
c

A ∧B
becomes

(A ∧B) ∨ (A ∧B)
m

A ∨ A
c

A
∧

B ∨B
c

B

,

and those reductions are iterated until the derivations obtained are in SKS.
This construction first appeared in [11]. Checking that it satisfies the defi-
nition of abstraction is trivial because there is no equality and premise and
conclusion are conserved – just note that ψ′ can be chosen as ψ. The atomic
form contains the same information as all the derivations that map to it (so
it is not much of an abstraction in the colloquial sense), but it can play the
role of the canonical element of their equivalence class. This fact is exploited
by the theory of atomic flows [21, 19], and atomic flows are indeed a proper
abstraction over derivations, conserving their normalisation properties.

Even if we do not do so in this thesis, we might want to use indepen-
dent abstractions to extract different properties from derivations, one for
each map, therefore it is important to know whether their composition is an
abstraction. The following proposition is trivial to prove.

Proposition 4.1.5. The composition of two independent abstractions is an
abstraction.

4.2 Abstraction for Strictly Linear Systems

We now define an abstraction map in KDTEq=-ODS that collapses as many
units as possible via unit equalities. In particular, subderivations whose every
section is mapped to the same unit are compressed to a single instance of
that unit. The behaviour of this map is straightforward. We work through
the structure of a derivation and we do two things:

• we eliminate all redundant units, and

• we remove all redundant vertical compositions.

We emphasise the fact that this definition is intuitive because we hope that
abstractions will be used routinely to extract properties of interest. The
ultimate goal is to simplify normalisation, therefore it would not be useful
if the difficulty in dealing with normalisation would be transferred to the
dealing with abstraction.

49

kdtA ≡ A for A ∈ V ∪ U (4.1)

kdt(ψ α χ) ≡


kdtψ if α ≡ ∨ and kdtχ ≡ 0, or if α ≡ ∧ and kdtχ ≡ 1
kdtχ if α ≡ ∨ and kdtψ ≡ 0, or if α ≡ ∧ and kdtψ ≡ 1
0 if α ∈ {∧,a, b, c, . . . } and kdtψ ≡ kdtχ ≡ 0
1 if α ∈ {∨,a, b, c, . . . } and kdtψ ≡ kdtχ ≡ 1
kdtψ α kdtχ otherwise

(4.2)

kdt(⟨ψ|x⟩χ) ≡


kdt([0|x]χ) if kdtψ ≡ 0
kdt([1|x]χ) if kdtψ ≡ 1
⟨kdtψ|x⟩ kdtχ otherwise

(4.3)

kdt
ψ
::

χ
≡



kdt
ψ
...
χ

if cnψ ≡ prχ

kdtψ
........
kdtχ

if cn kdtψ ≡ pr kdtχ and cnψ ̸≡ prχ

kdtψ
=
kdtχ

otherwise

(4.4)

kdt
ψ

r
χ

≡



kdt
ψ
...
χ

if cnψ ≡ prχ

kdtψ
........
kdtχ

if cn kdtψ ≡ pr kdtχ and cnψ ̸≡ prχ

kdtψ
r
kdtχ

otherwise

(4.5)

Figure 4.2: Abstraction map kdt.

50

Definition 4.2.1. In Figure 4.2, the map

kdt : KDTEq=-ODS → P(∅, {∨,∧,a, b, c, . . . }, {0, 1})

is defined recursively on the size of the argument.

Remark 4.2.2. Given derivations ψ and χ as in Figure 4.2, it could be that
cnψ ̸≡ prχ and cn kdtψ ≡ pr kdtχ, as, for example, in:

kdt
x ∧ 1

=
x

≡
kdt (x ∧ 1)
.................

kdtx
≡

x
...
x

≡ x .

It could also be that cnψ ≡ prχ and cn kdtψ ̸≡ pr kdtχ, as, for example, in:

kdt
x ∧

(0 ∧ 1) ∨ (1 ∧ 0)
∨p∧

(0 ∨ 1) ∧ (1 ∨ 0)
=
x ∧ ((0 ∨ 1) ∧ (1 ∨ 0))

≡ kdt
x ∧

(0 ∧ 1) ∨ (1 ∧ 0)
∨p∧

(0 ∨ 1) ∧ (1 ∨ 0)
.......................................
x ∧ ((0 ∨ 1) ∧ (1 ∨ 0))

≡ x ∧
0

∨p∧
1

.

We now study the properties of kdt. We first prove that it is indeed an
abstraction and then we characterize the derivations that are collapsed by kdt
into a unit. We need two technical lemmas (4.2.3 and 4.2.9) whose proofs are
stringent but straightforward case analyses. Again, we emphasise this aspect
because everything that concerns an abstraction map must be intuitive and
simple.

Lemma 4.2.3. Let = be the equality relation of System KDTEq=. For any
derivation ϕ in KDTEq=-ODS:

pr kdtϕ = pr ϕ and cn kdtϕ = cnϕ .

Proof. We prove the equality pr kdtϕ = pr ϕ by induction on the size of ϕ.
The following are the possible cases, in accordance with the numbering in
Figure 4.2.

1. ϕ ∈ V ∪ U . This is the base case. We have pr kdtϕ ≡ ϕ ≡ pr ϕ.

2. There are seven cases:

(a) ϕ ≡ ψ ∨ χ and kdtχ ≡ 0:

pr kdtϕ = pr kdtψ ∨ pr 0 ≡ pr kdtψ ∨ pr kdtχ = prψ ∨ prχ ≡ pr ϕ .

51

(b) ϕ ≡ ψ ∧ χ and kdtχ ≡ 1: analogous to Case 2a.

(c) ϕ ≡ ψ ∨ χ and kdtψ ≡ 0: analogous to Case 2a.

(d) ϕ ≡ ψ ∧ χ and kdtψ ≡ 1: analogous to Case 2a.

(e) ϕ ≡ ψ α χ, where α ∈ {∧,a, b, c, . . . } and kdtχ ≡ kdtψ ≡ 0:

pr kdtϕ ≡ 0 = pr kdtψ α pr kdtχ = prψ α prχ ≡ pr ϕ .

(f) ϕ ≡ ψ α χ, where α ∈ {∨,a, b, c, . . . } and kdtχ ≡ kdtψ ≡ 1:
analogous to Case 2e.

(g) ϕ ≡ ψ α χ and none of the above conditions apply:

pr kdtϕ ≡ pr kdtψ α pr kdtχ = prψ α prχ ≡ pr ϕ .

3. ϕ ≡ ⟨ψ|x⟩χ. There are three cases:

(a) kdtψ ≡ 0:

pr kdtϕ ≡ pr kdt([0|x]χ) = pr([0|x]χ) ≡ [pr 0|x] prχ ≡ [pr kdtψ|x] prχ

= [prψ|x] prχ = ⟨prψ|x⟩ prχ = pr ϕ .

(b) kdtψ ≡ 1: analogous to Case 3a.

(c) 0 ̸≡ kdtψ ̸≡ 1:

pr kdtϕ ≡ pr(⟨kdtψ|x⟩ kdtχ) ≡ ⟨pr kdtψ|x⟩ pr kdtχ = ⟨prψ|x⟩ prχ ≡ pr ϕ .

4. ϕ ≡
ψ
::

χ
. There are three cases:

(a) cnψ ≡ prχ:

pr kdtϕ ≡ pr kdt
ψ
...
χ

= pr
ψ
...
χ

≡ prψ ≡ pr ϕ .

(b) cn kdtψ ≡ pr kdtχ and cnψ ̸≡ prχ:

pr kdtϕ ≡ pr
kdtψ
........
kdtχ

≡ pr kdtψ = prψ ≡ pr ϕ .

52

(c) Otherwise:

pr kdtϕ ≡ pr
kdtψ

=
kdtχ

≡ pr kdtψ = prψ ≡ pr ϕ .

5. Analogous to Case 4.

A similar argument proves cn kdtϕ = cnϕ.

Corollary 4.2.4. kdt pr ϕ = pr kdtϕ and kdt cnϕ = cn kdtϕ.

Proof. It follows from Lemma 4.2.3. The first part is proved this way:

kdt pr ϕ ≡ pr kdt pr ϕ = pr pr ϕ ≡ pr ϕ = pr kdtϕ .

The second part is proved analogously.

Proposition 4.2.5. kdtϕ is in KDTEq=-ODS.

Proof. We must check that the inference steps created by applying kdt are
valid instances of KDTEq=-ODS rules. We refer to the numbering of cases in
Figure 4.2. Cases 4.1 to 4.3 do not create inference steps. Cases 4.4 and 4.5
are as follows:

• if ϕ ≡
ψ
::

χ
then cn kdtψ = cnψ = fl cnψ ≡ fl prχ = prχ = pr kdtχ;

• if ϕ ≡
ψ

r
χ

then (cnψ, prχ) ∈ r, for some rule r of KDTEq= (includ-

ing =); by Lemma 4.2.3 we have cn kdtψ = cnψ and pr kdtχ = prχ,
therefore (cn kdtψ, pr kdtχ) ∈ r.

In both cases, if kdt creates an inference step, it is valid.

Lemma 4.2.6. kdtϕ ≡ kdt kdtϕ.

Proof. Consider kdtϕ and its definition in Figure 4.2. The only non-trivial
cases to consider are the synchronal compositions of Cases 4.4 and 4.5 be-
cause they rearrange the structure of the derivation, potentially creating new
subderivations that could be acted upon by a further application of kdt. We
reason on definition of kdt. Let us call ‘collapsing conditions’ the conditions
in Cases 4.2 and 4.3 that are not ‘otherwise’. The only way for kdt kdtϕ to
not be identical to kdtϕ is if there were a subderivation ω in kdtϕ such that:

53

• kdtω ≡ 0 or kdtω ≡ 1 and one of the collapsing conditions in Case 4.2
or 4.3 is satisfied;

• ω resulted from the synchronal composition of two subderivations of
kdtϕ, say ω′ and ω′′, in Case 4.4 or 4.5, i.e.,

kdtϕ ≡ ϕ1

{
ϕ2{ω′}
...........
ϕ3{ω′′}

}
≡ ϕ1

{
ϕ4

{
ω′
....
ω′′

}}
≡ ϕ1{ϕ4{ω}} .

If that were true, ω would be removed from kdtϕ or replaced by a unit,
resulting in kdt kdtϕ ̸≡ kdtϕ. However, that is impossible because ω′ and ω′′

would satisfy the collapsing conditions.

Proposition 4.2.7. The map kdt : KDTEq=-ODS → KDTEq=-ODS is an
abstraction.

Proof. We check the three conditions of Definition 4.1.2.

• We proved in Lemma 4.2.6 that kdtϕ ≡ kdt kdtϕ, for every ψ ∈
KDTEq=-ODS.

• Consider
ψ
::::

χ
: because, by Lemma 4.2.3, cn kdtψ = cnψ = fl cnψ and

pr kdtχ = prχ = fl prχ, at least one of the following cases applies:

– if cnψ ≡ prχ or fl cnψ ≡ fl prχ, then
kdtψ

=
kdtχ

can be built, and

possibly also
kdtψ
........
kdtχ

;

– if (cnψ, prχ) belongs to an inference rule r, then we can build
kdtψ

r
kdtχ

.

• If we are given
ψ
::::

χ
and ψ′ such that kdtψ′ ≡ kdtψ, then choosing χ′ ≡ χ

satisfies the definition. Indeed, by Lemma 4.2.3, cnψ′ = cn kdtψ′ ≡
cn kdtψ = cnψ. Therefore χ′ can be vertically composed with ψ′.

54

Remark 4.2.8. It is not necessarily the case that a
ϕ
...
ψ

is identical to
aϕ
....
aψ

.

Consider, for example,

ϕ ≡ x ∧
(0 ∧ 1) ∨ (1 ∧ 0)

∨p∧
(0 ∨ 1) ∧ (1 ∨ 0)

and kdtϕ ≡ x ∧
0

∨p∧
1

;

if we take ψ ≡ cnϕ, we have that cn kdtϕ ≡ x ∧ 1 ̸≡ pr kdtψ ≡ x. This

example also shows that a
ϕ
::::

ψ
is not necessarily identical to a

aϕ
::::

aψ
. In fact,

kdt
ϕ
...
ψ

≡ x ∧
0

∨p∧
1

̸≡
x ∧

0
∨p∧

1
=

x

≡ kdt
x ∧

0
∨p∧

1
=

x

≡ kdt
kdtϕ
::::::::::

kdtψ
.

if we take ψ ≡ cnϕ, we have that cn kdtϕ ≡ x ∧ 1 ̸≡ pr kdtψ ≡ x. However,
note that

kdt
ϕ
...
ψ

≡ x ∧
0

∨p∧
1

=
x ∧

0
∨p∧

1
=

x

≡ kdt
kdtϕ

=
kdtψ

,

where we used Definition 3.3.15. Therefore
ϕ
...
ψ

and
kdtϕ

=
kdtψ

are structurally

equivalent.

The above remark suggests that some conditions involving equality might
be added to the definition of abstraction, for example,

a
ϕ
...
ψ

= a
aϕ
....
aψ

.

For the time being, we prefer to keep the notion of abstraction as independent
as possible from proof systems.

We have shown that the map kdt is an abstraction. We now characterise
those derivations that are collapsed by kdt into a single unit. This is useful in

55

the rest of the thesis to claim that strictly linear derivations can be normalised
the same way as their non-strict counterparts. This lemma is proved in
detail but the proof is straightforward. We omit similar proofs to similar
statements in the rest of the thesis, one reason being that the abstraction map
is supposed to be straightforward and its use should simplify (not complicate)
whatever other investigation it supports.

Lemma 4.2.9. Let = be the equality relation of System KDTEq=. For any
derivation ϕ in KDTEq=-ODS the following statements hold:

• kdtϕ ≡ 0 if and only if every section A of ϕ is such that A = 0.

• kdtϕ ≡ 1 if and only if every section A of ϕ is such that A = 1.

Proof. We prove the first statement by induction on the size of ϕ. The follow-
ing are the possible cases, in accordance with the numbering in Figure 4.2.
We say that a derivation ϕ is 0-good (resp., 1-good) if every section A of ϕ
is such that A = 0 (resp., A = 1).

1. ϕ ∈ V ∪ U . This is the base case and the statement is trivially true.

2. There are seven cases:

(a) kdtϕ ≡ kdt (ψ ∨ χ) ≡ kdtψ and kdtχ ≡ 0, which implies that
χ is 0-good. If kdtϕ ≡ 0 then kdtψ ≡ 0 then ψ is 0-good then
ϕ ≡ ψ ∨ χ is 0-good. Conversely, if ϕ is 0-good then ψ is 0-good
then kdtϕ ≡ kdtψ ≡ 0.

(b) kdtϕ ≡ kdt (ψ ∧ χ) ≡ kdtψ and kdtχ ≡ 1, which implies that
χ is 1-good. If kdtϕ ≡ 0 then kdtψ ≡ 0 then ψ is 0-good then
ϕ ≡ ψ ∧ χ is 0-good. Conversely, if ϕ is 0-good then ψ is 0-good
then kdtϕ ≡ kdtψ ≡ 0.

(c) kdtϕ ≡ kdt (ψ ∨ χ) ≡ kdtχ and kdtψ ≡ 0: analogous to Case 2a.

(d) kdtϕ ≡ kdt (ψ ∧ χ) ≡ kdtχ and kdtψ ≡ 1: analogous to Case 2b.

(e) ϕ ≡ ψαχ, where α ∈ {∧,a, b, c, . . . } and kdtϕ ≡ kdtχ ≡ kdtψ ≡
0. Therefore ψ and χ are 0-good and then ϕ is 0-good.

(f) ϕ ≡ ψαχ, where α ∈ {∨,a, b, c, . . . } and kdtϕ ≡ kdtχ ≡ kdtψ ≡
1: analogous to Case 2e.

56

(g) ϕ ≡ ψ α χ and none of the above conditions apply, i.e., kdtϕ ̸≡ 0
(resp., kdtϕ ̸≡ 1), α ̸≡ ∨ (resp., α ̸≡ ∧) and one of ψ and χ is not
0-good (resp., 1-good); therefore ϕ is not 0-good (resp., 1-good).

3. ϕ ≡ ⟨ψ|x⟩χ. We assume that x appears free in χ, otherwise kdtϕ ≡
kdtχ and the statement follows from the induction hypothesis. There
are three cases:

(a) If kdtψ ≡ 0, and then ψ is 0-good, we have:

kdtϕ ≡ kdt([0|x]χ) ≡ 0 iff [0|x]χ is 0-good iff ϕ is 0-good.

(b) If kdtψ ≡ 1, and then ψ is 1-good, we have:

kdtϕ ≡ kdt([1|x]χ) ≡ 0 iff [1|x]χ is 0-good iff ϕ is 0-good.

(c) Otherwise, kdtϕ ̸≡ 0 by the definition of kdt, and ϕ is not 0-good
because the converse would contradict Proposition 3.3.14.

4. ϕ ≡
ψ
::

χ
. There are three cases:

(a) If cnψ ≡ kdtχ, we have:

kdtϕ ≡ kdt
ψ
...
χ

≡ 0 iff ϕ ≡
ψ
::

χ
is 0-good.

(b) Otherwise, if cn kdtψ ≡ pr kdtχ, we have:

kdtϕ ≡
kdtψ
........
kdtχ

≡ 0 iff kdtψ ≡ kdtχ ≡ 0 iff ϕ ≡
ψ
::

χ
is 0-good.

(c) Otherwise, kdtϕ ≡
kdtψ

=
kdtχ

̸≡ 0 and ϕ is not 0-good, otherwise ψ

and χ would be 0-good and cn kdtψ ≡ pr kdtχ ≡ 0.

5. Analogous to Case 4.

An analogous argument proves the second statement.

57

The map kdt that we give here is sufficient to show that the transfor-
mation by which we eliminate the unit-equality inference steps in Chapter 6
does not alter the structure of the derivation in any meaningful way. The
definitions that we give in this chapter are only intended to be preliminary:
it could be that a different notion of abstraction map is necessary in the fu-
ture, or that an map other than kdt is needed to compare derivations inside
KDTEq=-ODS. As we mention in the introduction, explicit substitutions are
designed to abstract away the bureaucracy of where precisely one derivation
occurs inside a thread of another; we hope to define a map which can capture
this abstraction.

58

Chapter 5

The Eversion Lemma

In this chapter, we prove a technical lemma that we call ‘eversion’. It is at
the core of our results.

The problem that we want to solve is illustrated by the following example.
Suppose that we have the open formula A ∨B and we know that πB = f
for some substitution π that assigns units to variables. We will often assume
that there is a global substitution π that assigns units to variables in such
a way that we can exclusively operate on open formulae when transforming
derivations. We want to mimic the non-linear inference step

A

A ∨B

via a strictly linear subatomic derivation, without disrupting the structure
of the surrounding derivation, in a sense that might be captured precisely by
an abstraction map.

The subatomic shape only allows us to merge two formulae if they have
the same structure modulo saturation, but we cannot assume that this is the
case because A and B have, in principle, nothing to do with each other. The
idea of the Eversion Lemma is to consider a copy of A where all its leaves
have been substituted with copies of B. This formula is still interpreted as
the disjunctive unit in many logics. Remarkably, by a conceptually simple
construction, it is possible to derive a formula where the roles of A and B are
reversed: the external structure is that of B and A’s structure is replicated
in its leaves. In other words, what is outside gets inside and vice versa; this

59

is what we approximately get:

[B|v]v in AA

[A|v]v in B B
.

For example, and paying attention to the variables individually, we can see
the construction as distributing the leaves of the formulae like this:

(((w α x) β y) γ z) δ ((((w′ α x′) β y′) γ z′) a (((w′′ α x′′) β y′′) γ z′′))

(((w δ (w′ a w′′)) α (x δ (x′ a x′′))) β (y δ (y′ a y′′)) γ (z δ (z′ a z′′))

,

where we are taking A to be the open formula (v δ v′) a v′′ and B to be
instances of the open formula ((w α x) β y) γ z.

This only works under certain conditions, so the above constructions are
not precise, but serve to show the idea. The conditions under which ever-
sion works are flexible enough that it can be used as a powerful tool in the
situations that we have encountered.

The problem mentioned above is dealt with in the following way. The
derivation on the left is transformed into the derivation on the right:

πσϕ
.........................

πK

{
σA

σA ∨B

}
.........................

πψ

−→

πσ
[
v ∨Bf

∣∣v]
v in A

ϕ
..

πK



σ
[
v ∨Bf

∣∣v]
v in A

A

σA ∨

[
Bf
∣∣v]

v in A
A[

Af
∣∣v]

v in B
B


..

π
[
Af
∣∣v]

v in B
ψ

,

where Af and Bf are A and B where every variable has been replaced by a
variable equal to f under π and σ is the substitution resulting from propagat-
ing previous instances of this transformation. By doing this transformation,
the inference step becomes linear. The price to pay is the propagation of sub-
stitutions up and down the derivation but this does not affect its structure
and is transparent to the abstraction map kdt.

By doing this transformation repeatedly, for example, to eliminate all the
nonlinear inference steps, we blow up the size of the derivation exponentially.
However, the structures travelling up and down the derivations are taken

60

from the initial derivation (A and B in the example). They do not blow up;
they are simply composed repeatedly via substitutions. There is then hope
to avoid an exponential explosion of the size of the derivation by employing
explicit substitutions. That this is possible is the main result of Chapter 6.

5.1 Merge

The first step to getting the Eversion Lemma is to prove what we call the
‘Merge Lemma’, which is a generalisation of a foundational construction in
deep inference. We state the Merge and Eversion Lemmas for System rDT,
which does not commit to any special logical language. We do this because
the definitions involved are not specific to any particular logic and to draw
more attention to which rules are necessary for a proof system to verify the
Merge and Eversion Lemmas.

In this work, we use the lemmas for System rKDT, and we show how the
abstraction kdt is affected by the constructions in the lemmas. We also assess
the complexity of our constructions.

We introduce the notions of ‘down-’ and ‘up-conjugacy’. Given a formula
A, we can obtain two formulae from it, A′ and A′′, by copying A verbatim,
except that each connective occurrence is saturated down either in A′ or A′′,
which together are called ‘down-conjugates’ of A. In turn, A′ and A′′ can
each produce down-conjugates of themselves, recursively.

There are two versions of conjugacy, the ‘rigid’ one requires that each
connective occurrence is left intact either in A′ or A′′ (but not in both),
while the ‘lax’ version allows for it to be saturated in both. ‘Up-conjugacy’
is similarly defined. This notion is key to understanding the Eversion Lemma.

Definition 5.1.1. For m ≥ 1, let A1{ }1...n, . . . , Am{ }1...n be skeleton con-
texts that are obtained from skeleton context A{ }1...n by replacing connective
occurrences with other connective occurrences, which we call corresponding.
We say that

• A1{ }1...n, . . . , Am{ }1...n are rigid down-conjugates (resp., rigid up-
conjugates) of A{ }1...n if for each connective occurrence α in A{ }1...n,
one corresponding occurrence in any of A1{ }1...n, . . . , Am{ }1...n is α
and all the others are qα (resp., pα).

• A1{ }1...n, . . . , Am{ }1...n are lax down-conjugates (resp., lax up-conjugates)
of A{ }1...n if for each connective occurrence α in A{ }1...n, at most one

61

corresponding occurrence in any of A1{ }1...n, . . . , Am{ }1...n is α and
at least one and all the others are qα (resp., pα);

We extend the notions of conjugacy to formulae obtained from filling corre-
sponding holes of conjugate contexts with the same atoms, units or variables.

Rigid conjugacy can be summarised by the slogan ‘one unsaturated, all
the rest saturated’, and lax conjugacy by ‘at most one unsaturated, at least
one saturated’.

Example 5.1.2. In KDT, consider the formula A ≡ (w ∧ x) ∧ (y ∨ z). The
formulae

A′ ≡ (w ∨ x) ∧ (y ∨ z)

A′′ ≡ (w ∧ x) ∨ (y ∨ z)

form a pair of (rigid and lax) down-conjugates for A. In turn, the formulae

A′′ ≡ (w ∧ x) ∨ (y ∨ z)

A′′′ ≡ (w ∨ x) ∨ (y ∨ z)

form a pair of (rigid and lax) down-conjugates for A′′, so that the formulae
A′, A′′, and A′′′ form a trio of (rigid and lax) down-conjugates for A.

The formulae A′ and A′′′ form a pair of lax down-conjugates for A but not
a pair of rigid down-conjugates for A, because in both the leftmost instance
of ∧ in A has been saturated down.

Example 5.1.3. In KDT, consider

A{ }1...5 ≡ ⟨{ } ∧ { }|y⟩(y ∧ ({ } a ({ } ∨ { }))) ,

A1{ }1...5 ≡ ⟨{ } ∧ { }|y⟩(y ∨ ({ } a ({ } ∨ { }))) ,

A2{ }1...5 ≡ ⟨{ } ∨ { }|y⟩(y ∧ ({ } a ({ } ∨ { }))) ,

A3{ }1...5 ≡ ⟨{ } ∨ { }|y⟩(y ∧ ({ } a ({ } ∨ { }))) ,

A4{ }1...5 ≡ ⟨{ } ∨ { }|y⟩(y ∨ ({ } a ({ } ∨ { }))) .

We have that

• A1{ }1...5 and A2{ }1...5 are rigid and lax down-conjugates of A{ }1...5;

• A3{ }1...5 and A4{ }1...5 are rigid and lax down-conjugates of A2{ }1...5;

62

• A1{ }1...5, A3{ }1...5 and A4{ }1...5 are rigid and lax down-conjugates of
A{ }1...5;

• A3{ }1...5 and A4{ }1...5 are lax but not rigid down-conjugates of A{ }1...5;

• A3{ }1...5 is a rigid but not lax down-conjugate of itself;

• A2{ }1...5 and A3{ }1...5 cannot be rigid or lax down-conjugates of any
formula context because two corresponding connective occurrences are
not saturated down.

Remark 5.1.4. Every formula and formula context is the only single rigid
down-conjugate and the only single rigid up-conjugate of itself.

Remark 5.1.5. Given A1, . . . , Am rigid (resp., lax) down-conjugates of A,
where m ≥ 2, we can split them into two groups A1, . . . , Al and Al+1, . . . ,
Am and build, for each group, some formulae A′ and A′′ such that:

• A1, . . . , Al are rigid (resp., lax) down-conjugates of A′,

• Al+1, . . . , Am are rigid (resp., lax) down-conjugates of A′′ and

• A′ and Al+1, . . . , Am are rigid (resp., lax) down-conjugates of A.

• A′′ and A1, . . . , Al are rigid (resp., lax) down-conjugates of A.

• A′ and A′ are rigid (resp., lax) down-conjugates of A.

We build A′ by taking the least saturated corresponding connective occur-
rences from A1, . . . , Al; we similarly build A′′. A similar remark holds for
up-conjugacy.

Definition 5.1.6. We extend the notions of up- and down-saturation from
connectives to formulae. Given a formula A in rDT-ODS, its up-saturation
pA is the formula obtained by replacing each connective α in A by its up-
saturation pα. Similarly, its down-saturation qA is the formula obtained by
replacing each connective with its down-saturation. A similar notation is
used for contexts.

Example 5.1.7. In KDT for A ≡ (0 a x) ∨ (1 ∧ y) we have:

pA ≡ (0 a x) ∧ (1 ∧ y) ,

qA ≡ (0 a x) ∨ (1 ∨ y) .

63

Remark 5.1.8. For any A, A and qA form a pair of (rigid or lax) down-

conjugates of A, and A and pA form a pair of (rigid or lax) up-conjugates of
A.

Consider, in rDT, an open formulaA{xi}1...n and its rigid down-conjugates
A′ and A′′. A ‘down-merge of A via A′, A′′ and β’ consists in a derivation
whose conclusion is A′{yi}1...nβA′′{zi}1...n, after a renaming of variables, and
whose premise is A where each variable xi is substituted by yi β zi. This
construction is possible if A′ and A′′ have matching structures with the satu-
rations in the right place, which is precisely what their rigid down-conjugacy
captures. The following is an example with a formula A ≡ x1 ∧ (x2 ∨ x3),
some connective β and a choice of rigid down-conjugates:

(y1 β z1) ∧
(y2 β z2) ∨ (y3 β z3)

βq∨
(y2 ∨ y3) β (z2 ∨ z3)

q∧β
(y1 ∨ (y2 ∨ y3)) β (z1 ∧ (z2 ∨ z3))

.

The down-merge construction is a linear derivation whose variables can be
further instantiated, in particular with units. A more concrete case is the
usual deep-inference construction that allows us to reduce a generic identity
axiom to its atomic form, for example:

(1 ∨ 0) ∧
(0 ∨ 1) ∧ (1 ∨ 0)

∨q∧
(0 ∧ 1) ∨ (1 ∨ 0)

q∧∨
(1 ∨ (0 ∧ 1)) ∨ (0 ∧ (1 ∨ 0))

.

Note that the two formulae disjuncted in the conclusion are one the negation
of the other. Under kdt, the above derivation collapses to the unit 1. This
illustrates the main idea in this thesis: to obtain strictly linear derivations
we create structures that mimic other given structures (in the case above, A)
and that are transparent to an abstraction.

Notation 5.1.9. We denote by A(x) a formula A where any number of occur-
rences of x (including zero) appear free. Note that, for example, the notation
A{x}(y) could denote the formula y ∧ (x ∨ y), or the formula x, but not the
formula y. We use this notation in order to prove the inductive cases for
⟨A|x⟩B for the following lemmas without assuming that x occurs free in B
and without applying the explicit substitution.

64

The Merge Lemma can be stated more conveniently as two variants, ac-
cording to where the saturations are observed.

Lemma 5.1.10 (Merge Lemma). Let A{ }1...n be a skeleton context in rDT-O,
where O ∈ {OD,ODS}; let CA be the set of connectives appearing in A{ }1...n;
let β be a connective of rDT. If A′{ }1...n and A′′{ }1...n are rigid down-
conjugates (resp., rigid up-conjugates) of A{ }1...n then there exists a deriva-
tion

A{yi β zi}1...n
{βqα,qαβ|α∈CA}-O

A′{yi}1...n β A′′{zi}1...n
(resp.,

A′{yi}1...n β A′′{zi}1...n
{βpα,pαβ|α∈CA}-O

A{yi β zi}1...n
).

Both the width and the height of the derivation are at most 2|A{xi}1...n|.

Proof. We build the derivation on the left by induction on the structure of
A{ }1...n.

For the base case A ≡ { } we take the derivation y1 β z1.
There are two inductive cases:

1. If
A{ }1...n ≡ E{ }1...l α F{ }l+1...n ,
A′{ }1...n ≡ E ′{ }1...l α′ F ′{ }l+1...n ,
A′′{ }1...n ≡ E ′′{ }1...l α′′ F ′′{ }l+1...n ,

we build

E{yi β zi}1...l

E ′{yi}1...l β E ′′{zi}1...l
α

F{yi β zi}l+1...n

F ′{yi}l+1...n β F
′′{zi}l+1...n

r
(E ′{yi}1...l α′ F ′{yi}l+1...n) β (E ′′{zi}1...l α′′ F ′′{zi}l+1...n)

,

where r ∈ {βqα, qαβ}.

2. If
A{ }1...n ≡ ⟨F{ }1...l|x⟩E{ }l+1...n(x) ,
A′{ }1...n ≡ ⟨F ′{ }1...l|x⟩E ′{ }l+1...n(x) ,
A′′{ }1...n ≡ ⟨F ′′{ }1...l|x⟩E ′′{ }l+1...n(x) ,

65

we build

⟨ F{yi β zi}1...l

F ′{yi}1...l β F ′′{zi}1...l

∣∣∣∣∣∣x⟩E{yi β zi}l+1...n(x)

::

⟨F ′{yi}1...l|y, F ′′{zi}1...l|z⟩
E{yi β zi}l+1...n(y β z)

E ′{yi}l+1...n(y) β E ′′{zi}l+1...n(z)
::

⟨F ′{yi}1...l|x⟩E ′{yi}l+1...n(x) β ⟨F ′′{zi}1...l|x⟩E ′′{zi}l+1...n(x)

,

where y and z are fresh variables.
The width of the derivation is at most 2|A{xi}1...n|; note that |A{yi β zi}1...n| <

2|A{xi}1...n| if there are explicit substitutions inA{ }1...n (for example, A{ } ≡
⟨{ }|x⟩x).

For each connective in A there is a corresponding instance of composition
by rule in the constructed derivation; and for each explicit substitution in A,
there are two corresponding instances of composition by expansion. There-
fore the height of the derivation is at most 2|A{xi}1...n|, the worst scenario
being a formula only composed of explicit substitutions, each of which is of
size 1.

The proof of the second statement is analogous.

Remark 5.1.11. The Merge Lemma holds in rKDT-ODS for all connectives
β, because for all connectives α we have that βqα, qαβ, βpα, pαβ ∈ rKDT. In the
subatomic proof system for multiplicative linear logic SAMLLS given by Aler
Tubella in [2], the derivation on the left can be constructed if β = O because
the system contains the rules Oq�, Oqa, q�O and qaO for every atom a, and
the rule OqO can be derived from associativity of O. Dually, the derivation on
the right can be constructed if β = �. This may seem limiting, but we will
explain in Chapter 6 how the unit-equality inference steps could nevertheless
be eliminated, albeit with an exponential complexity penalty.

The construction in Lemma 5.1.10 is deterministic, therefore we can use
it for the following definition.

Definition 5.1.12. The two derivations constructed for Lemma 5.1.10 are
called, respectively and left to right, the down-merge and the up-merge of A
via A′, A′′ and β. We call the same any derivation obtained from them by
applying substitutions.

66

Example 5.1.13. Let A ≡ ⟨w ∨ x|w⟩(w a (y ∧ z)) in KDT-ODS. Then we can
build the following down-merge via the conjugate pair ⟨w ∨ x|w⟩(wa (y∧ z))
and ⟨0 ∨ 0|w⟩(w a (0 ∨ 0)) and the connective ∨:

⟨ (w ∨ 0) ∨ (x ∨ 0)
∨q∨

(w ∨ x) ∨ (0 ∨ 0)

∣∣∣∣∣w⟩ (w a ((z ∨ 0) ∧ (y ∨ 0)))

:::

⟨w ∨ x|w⟩ ⟨0 ∨ 0|w′⟩
(w ∨ w′) a

(y ∨ 0) ∧ (z ∨ 0)
∨q∧

(y ∧ z) ∨ (0 ∨ 0)
aq∨

(w a (y ∧ z)) ∨ (w′ a (0 ∨ 0))
:::

⟨w ∨ x|w⟩ (w a (y ∧ z)) ∨ ⟨0 ∨ 0|w⟩ (w a (0 ∨ 0))

.

Remark 5.1.14. The specification of the proof system for the merge deriva-
tions could be made tighter by tracking more closely which connectives are
saturated.

The following notation is helpful when applying the Merge and Eversion
Lemmas.

Notation 5.1.15. [Bi|xi]1...nA stands for the simultaneous actual substitu-
tion [B1|x1, . . . , Bn|xn]A. Sometimes indices will be denoted by superscripts

instead of subscripts, as in [Bi|xi]1...nA. Given a set of variables S =
{x1, . . . , xn}, the notation [Bi|xi]S A stands for [B1|x1, . . . , Bn|xn]A; we might
also write [Bv|v]S A to stand for [Bx1 |x1, . . . , Bxn|xn]A. These conventions
extend to explicit substitutions and derivations. Therefore, we might in-
dicate with ⟨Bv|v⟩A ϕ the substitution ⟨Bx1|x1, . . . , Bxn|xn⟩ϕ, where A =
{x1, . . . , xn} is the set of free variables of A (see Definition 2.1.1).

The notation [Bv|v]AA is at risk of being ambiguous because the enumer-
ation of the variables is arbitrary. For example, if A = {v1, v2} and B1 = v2
then [B1|v1] [B2|v2]A ̸≡ [B2|v2] [B1|v1]. We take care to use this notation only
when it is unambiguous and there is no dependency between substitutions.

Remark 5.1.16. For many logics, the reduction of the identity and cut rules
to atomic form is made possible by special cases of the merge construction.
It is a standard deep-inference technique dating back to the origins [18]. For
example, a cut

A� Ā

⊥

67

in linear logic, would be obtained as follows. Translate A into its subatomic
version πA, where A is an open formula and π an actual substitution A →
{⊥, 1}; from A obtain Ã by replacing O with � and � with O; let π′ : A →
{⊥, 1} be such that π′x ≡ ⊥ iff πx ≡ 1. Observe that A and Ã are rigid

up-conjugates of qA and build

πA � π′Ã

[πv � π′v|v]A
qA

,

which is an up-merge of πA and π′Ã via �. The translation of that derivation
back into a standard system realises the decomposition of a generic cut rule
into several instances of its atomic version (plus switches).

The following variant of the Merge Lemma is useful in the following.
In its statement, we exchange the roles of A and B, and of α and β, to
make Remark 5.2.4 clearer. This variant allows us to avoid forming down-
conjugates (resp. up-conjugates), leaving A intact when the connective of
the merge is saturated up.

Lemma 5.1.17 (Merge Lemma – Variant). Let B{ }1...n be a skeleton context
in rDT-O, where O ∈ {OD,ODS}; let CB be the set of connectives appearing
in B{ }1...n; let α be a connective of rDT. Then there exists a derivation

B{yi pα zi}1...n
{pαβ,βpα|β∈CB}-O

B{yi}1...n pα B{zi}1...n
(resp.,

B{yi}1...n qα B{zi}1...n
{qαβ,βqα|β∈CB}-O

B{yi qα zi}1...n
).

Both the width and the height of the derivation are at most 2|B{xi}1...n|.

Proof. The proof is identical to the proof of Lemma 5.1.10, except for where
an inference step is used. That will be either pβα, or αpβ, or qβα, or αqβ.

Example 5.1.18. As in the previous example, let A ≡ ⟨w ∨ x|w⟩(wa (y∧ z)).
Then we can build the following variant down-merge in KDT-ODS via the
conjugate pair ⟨w ∨ x|w⟩(w a (y ∧ z)) and ⟨w′ ∨ x′|w⟩(w a (y′ ∨ z′)) and the

68

connective ∧:

⟨ (w ∧ w′) ∨ (x ∧ x′)
∨p∧

(w ∨ x) ∧ (w′ ∨ x′)

∣∣∣∣∣w⟩ (w a ((z ∧ z′) ∧ (y ∧ y′)))
::

⟨w ∨ x|w⟩ ⟨w′ ∨ x′|w′⟩
(w ∧ w′) a

(y ∧ y′) ∧ (z ∧ z′)
∧p∧

(y ∧ z) ∧ (y′ ∧ z′)
ap∧

(w a (y ∧ z)) ∧ (w′ a (y′ ∧ z′))
::

⟨w ∨ x|w⟩ (w a (y ∧ z)) ∧ ⟨w′ ∨ x′|w⟩ (w a (y′ ∧ z′))

.

Remark 5.1.19. The reduction of the contraction rule to atomic form is made
possible by a special case of the variant merge construction. Again, it is a
standard deep-inference technique dating back to the origins [11].

The following two propositions apply kdt to the merge constructions that
are employed in the next section to eliminate unit equalities from KDTEq;
they serve to show that the transformation described in Theorem 6.3.1 is
transparent to the abstraction map kdt. The first, Proposition 5.1.20, relates
to unit equalities of the form Aβuβ = A, and the second, Proposition 5.1.22,
relates to atomic unit equalities of the form u a u = u.

Proposition 5.1.20. Let A{ }1...n be a skeleton context in KDTEq=-ODS;
let β ∈ {∨,∧}; let uβ be the unit for β (i.e., x β uβ = x); let D1, . . . , Dn be
any formulae such that kdtD1 ≡ · · · ≡ kdtDn ≡ uβ. Consider the following
down-merge and up-merge derivations of A{ }1...n via β:

ϕ ≡
A{Ci βDi}1...n

KDTEq=-ODS

A{Ci}1...n β qA{Di}1...n
and ψ ≡

A{Ci}1...n β pA{Di}1...n
KDTEq=-ODS

A{Ci βDi}1...n
,

where C1, . . . , Cn are any formulae. Then kdtϕ = kdtA{Ci}1...n = kdtψ.
If A{ }1...n is free from explicit substitutions, then kdtϕ ≡ kdtA{Ci}1...n ≡
kdtψ. A similar statement holds if we exchange the role of Cis and Dis and
the corresponding down and up-saturations of A{ }1...n.

Proof. We follow the construction in Lemma 5.1.10 and apply kdt. If there
are no explicit substitutions, each inference step r produced by the construc-
tion exhibits a premise and a conclusion that are identical to kdtA{Ci}1...n.

69

Those r steps are therefore collapsed by kdt into synchronal compositions. In
case explicit substitutions are present, then the merge construction produces
two compositions by expansion for each substitution. Those compositions
are turned by kdt into equality inference steps.

Example 5.1.21. The construction in Example 5.1.13 satisfies the conditions
of this proposition. Applying kdt to the construction collapses the structure
and results in ⟨w ∨ x|w⟩(w a (y ∧ z)).

Proposition 5.1.22. Let A ≡ A{ }1...n be a skeleton context in KDTEq=-ODS;
let β ∈ {a, b, c, . . . }; let u ∈ {0, 1}; let C1, . . . , Cn, D1, . . . , Dn be any
formulae such that kdtC1 ≡ · · · ≡ kdtCn ≡ kdtD1 ≡ · · · ≡ kdtDn ≡ u.
Consider the following down-merge and up-merge derivations of A via β:

ϕ ≡
A{Ci βDi}1...n

KDTEq=-ODS

A{Ci}1...n β qA{Di}1...n
and ψ ≡

A{Ci}1...n β pA{Di}1...n
KDTEq=-ODS

A{Ci βDi}1...n
.

Then kdtϕ = kdtA{u}1...n = kdtψ = u. If A is free from explicit substitu-
tions, then kdtϕ ≡ kdtA{u}1...n ≡ kdtψ ≡ u. A similar statement holds if

we exchange A and qA in the conclusion of ϕ or A and pA in the premise of
ψ.

Proof. The proof is similar to the one for Proposition 5.1.20. Note that,
in this case, all variables in A are substituted by formulae equivalent to u,
therefore kdtϕ and kdtψ are equivalent or identical to u.

Example 5.1.23. We consider the following down-merge in KDT-ODS via
the conjugate pair ⟨u ∧ u|w⟩(w b (u ∨ u)) and ⟨u ∨ u|w⟩(w b (u ∧ u)) and the
connective a:

⟨ (u a u) ∧ (u a u)
aq∧

(u ∧ u) a (u ∨ u)

∣∣∣∣∣w⟩ (w b ((u a u) ∧ (u a u)))

::

⟨u ∧ u|w1⟩ ⟨u ∨ u|w2⟩
(w1 a w2) b

(u a u) ∧ (u a u)
q∧a

(u ∨ u) a (u ∧ u)
aqb

(w1 b (u ∨ u)) a (w2 b (u ∧ u))
::

⟨u ∧ u|w⟩ (w b (u ∨ u)) ∧ ⟨u ∨ u|w⟩ (w b (u ∧ u))

.

This derivation satisfies the conditions of this proposition. Applying kdt to
this construction results in u as the entire derivation is collapsed.

70

5.2 Eversion

We can now prove the Eversion Lemma and make precise the conditions
mentioned in the introduction to this chapter. The main point to understand
is that, for the construction to work, it is necessary to have one and only
one un-saturated occurrence of each connective occurrence in A among its
conjugates substituted into B. This allows us to trigger the Merge Lemma
and incrementally insert A into B.

Lemma 5.2.1 (Eversion Lemma). In rDT-ODS, let

• A1{ }1...n, . . . , Am{ }1...n be skeleton contexts that are rigid down-conjugates
of A{ }1...n and

• A1{ }1...n, . . . , Am{ }1...n be skeleton contexts that are rigid up-conjugates
of A{ }1...n;

let B ≡ B{yj}1...m be an open formula such that B = {y1, . . . , ym}; assume
that, for 1 ≤ j ≤ m, yj appears at least once in flB and if it appears more
than once, then

• Aj{ }1...n ≡ qA{ }1...n and

• Aj{ }1...n ≡ pA{ }1...n;

let CA and CB be the sets of connectives appearing in A and B, respectively.
Then the following derivations exist:

A
{
B{xji}1...m

}
1...n

{βqα,qαβ|α∈CA,β∈CB}

B
{
Aj{xji}1...n

}1...m and

B
{
Aj{xji}1...n

}1...m
{βpα,pαβ|α∈CA,β∈CB}

A
{
B{xji}1...m

}
1...n

,

where 1 ≤ i ≤ n and 1 ≤ j ≤ m, and explicit substitutions appear if and only
if they appear in A or B. Both the width and the height of the derivations
are O(|A||B|).

Proof. We build the derivation on the left in the statement by induction on
the structure of B.

For the base case B ≡ y1, we take the derivation A{x1i }1...n.
There are two inductive cases:

71

1. If B{yj}1...m ≡ C{yj}1...l β D{yj}l+1...m we build the following deriva-
tion, where ψ and χ are obtained by induction and ϕ by Lemma 5.1.10.

A
{
C{xji}1...l β D{xji}l+1...m

}
1...n

ϕ {βqα,qαβ|α∈CA }

A′ {C{xji}1...l}1...n
ψ

C
{
Aj{xji}1...n

}1...l β A′′ {D{xji}l+1...m
}
1...n

χ

D
{
Aj{xji}1...n

}l+1...m

A′{ }1...n and A′′{ }1...n are obtained as in Remark 5.1.5 and are rigid
down-conjugates of A{ }1...n.

2. If B{yj}1...m ≡ ⟨C{yj}1...l
∣∣y⟩D{yj}l+1...m(y) we build the following

derivation, where ψ and χ are obtained by induction.

A
{⟨C{xji}1...l∣∣y⟩D{xji}l+1...m(y)

}
1...n

:::

⟨C{xji}1...l
∣∣xi⟩1...n A

{
D{xji}l+1...m(xi)

}
1...n

χ

D
{
Aj{xji}1...n

}l+1...m
(A′{xi}1...n)

:::

⟨A′ {C{xji}1...l}1...n
ψ

C
{
Aj{xji}1...n

}1...l
∣∣∣∣∣∣y⟩D {Aj{xji}1...n}l+1...m

(y)

A′{ }1...n is obtained as in Remark 5.1.5. There might be multiple copies
of A′{ }1...n in the conclusion of χ, but the conditions in the statement
of the lemma guarantee that if there is more than one copy, then they
are saturated down, therefore do not break the induction hypothesis. It
is also important that A′{ }1...n appears at least once in the conclusion
of χ, again to validate the induction hypothesis.

The construction of the derivation on the right in the statement is analogous.
The width of the derivations is O(|A||B|). The worst-case scenario for the

height is Case 1, where the height increases by 2|A| at most, in the merge ϕ.
Since the number of iterations is dominated by |B|, we have that the height
is O(|A||B|).

Definition 5.2.2. We call eversions those derivations constructed in Lemma 5.2.1.

72

Example 5.2.3. Let A ≡ ({ }∧ { })a { } and B ≡ { } b ({ }∨ { }). Then we
can construct the eversion:

(x1 b (y1 ∨ z1)) ∧ (x2 b (y2 ∨ y3))
q∧b

(x1 ∨ x2) b
(y1 ∨ z1) ∧ (y2 ∨ y3)

q∧∨
(y1 ∨ y2) ∨ (z1 ∧ z2)

a (x3 b (y3 ∨ z3))

bqa

((x1 ∨ x2) a x3) b
((y1 ∨ y2) ∨ (z1 ∧ z2)) a (y3 ∨ z3)

∨qa
((y1 ∨ y2) a y3) ∨ ((z1 ∧ z2) a z3)

Remark 5.2.4. The Merge Lemma 5.1.10 is a special case of the Eversion
Lemma where B{ }{ } ≡ { } β { }; its variant Lemma 5.1.17 is a special
case of the Eversion Lemma where the down-merge is obtained by setting
A{ }{ } ≡ { } pα { } and the up-merge by setting A{ }{ } ≡ { } qα { }.

The following corollary of the Eversion Lemma is useful because it is
a simpler, special case of the lemma when A{ }1...n ≡ qA{ }1...n, which is
a common occurrence when investigating the properties of strictly linear
derivations.

Corollary 5.2.5. Let A{ }1...n and B{ }1...m be skeleton contexts and let CA
and CB be the respective sets of connectives. Then there exist the derivations

qA
{
B{zji }1...m

}
1...n

{βqα,qαβ|α∈CA,β∈CB}

B
{

qA{zji }1...n
}1...m

and

B
{

pA{zji }1...n
}1...m

{βpα,pαβ|α∈CA,β∈CB}

pA
{
B{zji }1...m

}
1...n

,

where explicit substitutions appear if and only if they appear in A or B.

Remark 5.2.6. Because of the above corollary, every instance of a rule of rDT
has the same premise and conclusion as some eversion.

5.3 System DT∗

In this section, we illustrate briefly how eversion can be useful in the design
of proof systems. We leave the full exploration of these ideas to other papers
but we think that the few considerations here help to appreciate the results
in this thesis.

73

We have defined two variants of conjugacy, a rigid one and a lax one, and
established the Eversion Lemma for the rigid variant, which corresponds to
System rDT. We can prove a different and somewhat more general version of
the lemma with the lax variant of conjugacy if we extend rDT to DT; that is,
if we add mix rules to the system. That would allow for a connective to be
weakened along the order induced by saturation. For classical logic, the new
rules do not affect provability, but the availability of new derivations simpli-
fies certain constructions. For example, the cut-elimination construction in
Chapter 8 benefits from it.

We can state for DT the following two ‘lax’ versions of the Eversion
Lemma 5.2.1 and its corollary 5.2.5, and a similar remark to 5.2.6.

Lemma 5.3.1 (Eversion Lemma – Lax Variant). In DT-ODS, let

• A1{ }1...n, . . . , Am{ }1...n be skeleton contexts that are lax down-conjugates
of A{ }1...n and

• A1{ }1...n, . . . , Am{ }1...n be skeleton contexts that are lax up-conjugates
of A{ }1...n;

let B ≡ B{yj}1...m be an open formula such that B = {y1, . . . , ym}; assume
that, for 1 ≤ j ≤ m, yj appears at least once in flB and if it appears more
than once, then

• Aj{ }1...n ≡ qA{ }1...n and

• Aj{ }1...n ≡ pA{ }1...n;

let CA and CB be the sets of connectives appearing in A and B, respectively.
Then the following derivations exist:

A
{
B{xji}1...m

}
1...n

{qα,βqα,qαβ|α∈CA,β∈CB}

B
{
Aj{xji}1...n

}1...m and

B
{
Aj{xji}1...n

}1...m
{pα,βpα,pαβ|α∈CA,β∈CB}

A
{
B{xji}1...m

}
1...n

,

where 1 ≤ i ≤ n and 1 ≤ j ≤ m, and explicit substitutions appear if and only
if they appear in A or B. Both the width and the height of the derivations
are O(|A||B|).

74

Proof. We can build the derivation on the left of the statement this way:

A
{
B{xji}1...m

}
1...n

{qα,|α∈CA}

A′ {B{xji}1...m
}
1...n

ϕ {βqα,qαβ|α∈CA,β∈CB}

B
{
Aj{xji}1...n

}1...m
,

where A′{ }1...n is such that A1{ }1...n, . . . , Am{ }1...n are its rigid down-
conjugates and ϕ is obtained by Lemma 5.2.1. We can build analogously the
derivation on the right of the statement.

This variant of the Eversion Lemma holds in the system KDT-ODS, where
we have the mix rule q∧.

Corollary 5.3.2. Let A{ }1...n and B{ }1...m be skeleton contexts and let CA
and CB be the respective sets of connectives. Then there exist the derivations

A
{
B{zji }1...m

}
1...n

{qα,βqα,qαβ|α∈CA,β∈CB}

B
{

qA{zji }1...n
}1...m

and

B
{

pA{zji }1...n
}1...m

{pα,βpα,pαβ|α∈CA,β∈CB}

A
{
B{zji }1...m

}
1...n

,

where explicit substitutions appear if and only if they appear in A or B.

Remark 5.3.3. Because of the above corollary, every instance of a rule of DT
has the same premise and conclusion as some eversion.

It is possible to check in polynomial time whether two given formulae are
the premise and conclusion of an eversion either in rDT or DT, therefore we
can use eversion as an inference rule.

Definition 5.3.4. The following two proof systems are defined in Figure 5.1,
where A1{ }1...n, . . . , Am{ }1...n, A1{ }1...n, . . . , Am{ }1...n and B{ }1...m stand
for skeleton contexts:

• System rDT∗, if the Ai{ }1...ns and the Ai{ }1...ns are rigid conjugates
of A{ }1...n, and

• System DT∗, if the Ai{ }1...ns and the Ai{ }1...ns are lax conjugates of
A{ }1...n.

75

B
{
Aj{xji}1...n

}1...m
⋆{p⋆}

A
{
B{xji}1...m

}
1...n

A
{
B{xji}1...m

}
1...n

⋆{q⋆}
B
{
Aj{xji}1...n

}1...m
where

A1{ }1...n, . . . , Am{ }1...n are
up-conjugates of A{ }1...n

A1{ }1...n, . . . , Am{ }1...n are
down-conjugates of A{ }1...n

Figure 5.1: System rDT∗, for rigid conjugates, and System DT∗, for lax
conjugates.

Proposition 5.3.5. Every derivation in rDT∗ can be turned in polynomial
time into a derivation in rDT with the same premise and conclusion.

Proposition 5.3.6. Every derivation in DT∗ can be turned in polynomial
time into a derivation in DT with the same premise and conclusion.

Systems rDT∗ and DT∗ are remarkable because they capture a vast num-
ber of inference rules for many logics. One way they do that is via rDT for
binary connectives, but we can extend saturation and conjugacy to unary
connectives, i.e., modalities and quantifiers, and the Eversion Lemma is still
valid. Moreover, the inference rules so generated are sound for many logics.
For example, in modal logics [32] we get

□(x ∨ y)
∨q□
□x ∨ ♢y

and
♢x ∧□y

∧p♢
♢(x ∧ y)

;

in linear logic [33] we get

!(xO y)
Oq!

!xO ?y
and

?x� !y
�p?

?(x� y)
;

in classical logic [9] we get

∀x.(A ∨B)
∨q∀

∀x.A ∨ ∃x.B
and

∃x.A ∧ ∀x.B
∧p∃

∃x.(A ∧B)
.

One important difference between rDT∗ and DT∗ is the treatment of unary
sets of conjugates. For example, the formula ∀x.x generates one set con-
taining one rigid down-conjugate, i.e., ∀x.x, and one set containing one lax

76

down-conjugate, i.e., ∃x.x. Only the lax conjugate generates sound rules in
classical logic, for example

∀x.∃y.A
∃q∀
∃y.∃x.A

and
∀y.∀x.A

∀p∃
∃x.∀y.A

.

The rigid notion of conjugacy would require each connective to be satu-
rated, generating instead

∀x.∃y.A
∃q∀
∃y.∀x.A

and
∀y.∃x.A

∀p∃
∃x.∀y.A

,

which are not sound.
We want to investigate further what role eversion can play in the design

of proof systems and the study of their properties, in particular normalisa-
tion. We can start from DT∗, define saturation for the language at hand,
and then determine which of the rules generated are sound for the intended
semantics. We hope that this method will give us a systematic and simplified
normalisation theory for several logics.

77

Chapter 6

Strict Linearity

In the introduction of Chapter 5, we illustrated the problem that we want to
solve: achieving strict linearity by eliminating unit-equality inference steps.
With eversion and explicit substitutions, this can be achieved with only a
polynomial complexity cost in the size of the derivation; both play a vital
role here.

The basic idea is that units in a derivation can be padded with struc-
ture which mimics their surroundings and making them amenable to being
merged. This padding consists only of multiple copies of the unit, and so
is invisible to the kdt abstraction map. Moreover, the only subderivations
that they are involved in are instances of merges and eversions which do not
perform any semantically meaningful logical deduction, and therefore can be
discounted in normalisation procedures.

A naive approach to eliminating the unit-equality inference steps in this
way will blow up the size of the derivation exponentially, because the padded
formulae will be propagated through the derivation and will interfere with one
another. In this chapter we show that this can be controlled, so that the unit-
equality steps can be eliminated while maintaining structural equivalence and
paying only a polynomial price in terms of complexity.

We work inside KDTEq=-ODS and we turn rKDTEq-OD (resp., KDTEq-OD)
derivations into rKDT-ODS (resp., KDT-ODS) ones. In other words, we ex-
change unit-equality steps for explicit substitutions. Having explicit sub-
stitutions does not affect the normalisation properties of any proof system
because normalisation can happen inside substitutions the same way as it
happens outside.

First we will discuss the specifics of how interference between elimination

78

steps can blow up the size of the derivation, and show how eversion and
explicit substitutions are deployed to control them. We then prove the main
result of this chapter, using a construction on the entire given derivation.

We refer back to the unit equalities given in Figure 3.6 and note that they
all can be expressed as

π
A

=
A α x

or π
A α x

=
A

for x a variable, A an open formula, and π an actual substitution which
puts a unit onto x; without loss of generality, we assume that the unit is
always on the right. For the ‘bifurcating’ unit equalities u = u a u = u ∧ u =
u∨ u, we note that this means making a choice for which occurrence of u we
take to be A. We can describe those unit-equality inference steps as shown
on the left as propagating a unit upwards through the proof; and those as
shown on the right as propagating a unit downwards.

This general template for the unit-equality inference steps will allow us
to perform the transformations necessary and to treat the unit-equality in-
ference steps in a general way.

Given a derivation ϕ ∈ KDTEq-OD, we eliminate the unit-equality in-
ference steps in two phases, where the first deals with all those propagat-
ing a unit downwards and the second with all those propagating one up-
wards. In the first phase, the downward-propagating unit-equality inference
steps are replaced by an appropriate merge; and in the second phase, the
upward-propagating unit-equality inference steps are replaced by an appro-
priate merge and where necessary, these two merges are resolved with an
eversion.

6.1 Compression via Eversion

Consider the problem of eliminating the unit equations from a derivation ϕ ∈
rKDTEq-OD without using the eversion lemma, and in particular consider
eliminating a pair of unit-equality inference steps as shown here (where we
assume that in each section of ψ, x occurs exactly once, so that the two
inference steps are connected):

79

π

ϕ
.......................

K

{
A

=
A α x

}
.......................

ψ
.......................

H

{
B β x

=
B

}
.......................

χ

Eliminating the two unit equalities would result in a substitution
[

pB
x
∣∣∣x]

being propagated up, and a substitution
[

qA
x
∣∣∣x] being propagated down

(where Ax and Bx stand for the result of substituting the variable x onto
every leaf of A and B respectively). These cannot in general be resolved
without using eversion. Therefore, in order to eliminate both unit equali-
ties, the entire context around one of them must be duplicated, resulting in
something like the following derivation:

π

[v β x|v]H{ }[w α x|w]Aϕ
...

[v β x|v]H{ }K

[w α x|w]AA

A α qA
x


...

[v β x|v]H{ }

[
qA
x
∣∣∣x]ψ

..

[v β x|v]H{ }H
{
B β qA

x
}

H{B}
..........
χ

β [x|v]
qH{ }

qH{qA
x
}

.

This doubles the width of the derivation, leading to an exponential blow-
up in the size when eliminating all unit-equality inference steps in succession.

Indeed this is the situation that we would find in a subatomic system for
multiplicative linear logic with units and decision trees. It is not the case
that ⊥ � ⊥ = ⊥ nor that 1 O 1 = 1, and so unit-equality inference steps

80

⊥ � ⊥
=

⊥
and

1
=
1 O 1

cannot in general be eliminated via local merges. We

would instead have to duplicate the context in this way.
In classical logic, by instead using the eversion lemma to resolve the

propagated substitutions, the duplication of the context H{ } is avoided.

6.2 Compression via Explicit Substitutions

Eversion alone is not sufficient to control the potential blow-up of size; we
need to take care to describe a construction in which successive eliminations
of unit equalities cannot lead to an exponential accumulation of material.

To observe the potential blow-up, consider the following derivation:

π

κ1

{
A

=
A α x

}
.............................

κ2

{
B{x}

=
B{x} β y

}
...................................

κ3

{
C{x}{y}

=
C{x}{y} γ z

} ,

in which κ1, κ2, κ3 are derivation contexts.
Eliminating these unit equalities from top to bottom will result in the

following derivation (where again, Ax stands for substituting a variable x
onto every leaf of a formula A):

π

[v γ z|v]C{ }{ }[v β (y γ z)|v]B{ }κ1


[v α ((x γ z) β (y γ z))|v]AA

A α [(x γ z) β (y γ z)|v]
qA

qA


..

[v γ z|v]C{ }{ }κ2


[v β (y γ z)|v]B{ }B{[(x γ z) β (y γ z)|v]

qA
qA}

B{[x γ z|v]
qA

qA} β [y γ z|v]
qB

qB{[y γ z|v]
qA

qA}


..

κ3


[v γ z|v]C{ }{ }C{[x γ z|v]

qA
qA}{[y γ z|v]

qB
qB{[y γ z|v]

qA
qA}}

C{qA
x
}{ qB

y
{qA

y
}} γ qC{qA

z
}{ qB

z
{qA

z
}}



.

81

Crucially, we see that in the conclusion, z is replaced by qC{qA
z
}{ qB

z
{qA

z
}},

which contains two copies of qA
z
: one inherited from x occurring in B{x}

and one from x occurring in C{x}{y}. This pattern will lead to exponential
blow-up for the size of the derivation, but it can be controlled with explicit
substitutions. We will factor out the repeated instances of qA

z
and instead

replace z by ⟨qA
z
∣∣∣x⟩ ⟨qB

z
{x}
∣∣∣y⟩ qC{x}{y}. This compression is realised in the

corresponding composition by expansion steps inside χi and ωj in Figure 6.3.

6.3 Main theorem

Theorem 6.3.1. Given any derivation ϕ in rKDTEq-OD (resp., KDTEq-OD),
we can build a derivation ϕ′ in rKDT-ODS (resp., KDT-ODS) such that ϕ
and ϕ′ are structurally equivalent for the abstraction kdt and such that the
size of ϕ′ is polynomial in the size of ϕ.

Proof. This proof works the same for rKDTEq-OD and KDTEq-OD, so we
assume that it is for rKDTEq-OD. We refer to Figures 6.1 and 6.2. Note that
we use Notation 5.1.15.

Given a derivation ϕ that contains inference steps in System KEq, we
extract all the units into a substitution π, i.e, we obtain a pre-derivation ψ
such that ϕ ≡ πψ, where π is an actual substitution and ψ is open, i.e., it
does not contain units. We assume that different occurrences of a unit or
variable in each section of ϕ are assigned by π to different variables, and all
variables so created are fresh. Moreover, π is such that all the inference steps
in ψ except for those in System KEq remain valid, i.e., corresponding units
and variables in the premise and the conclusion of a step are assigned the
same variable. To be valid, each equality step of ϕ in KEq needs at least one
unit that does not appear either in the premise or the conclusion, therefore
ψ is not necessarily a derivation.

We first consider the equality steps which are instances of =1, =3, =5,
=7, =9 or =11, as given in Figure 3.6 on page 37; that is, those unit-equality
inference steps which create a unit travelling downwards in the derivation.
Let x1, . . . , xn be the variables in ψ that correspond to one of the units
in those steps, via π. For rules =5 and =11, there are two choices and we
pick one at random. Figure 6.1 shows x1, . . . , xn to the right of the αis but
we assume that they might be to the left, without prejudice to this proof.
Without loss of generality, we assume that the sections of ψ containing the

82

ψ ≡

ψ0..........................

K1

{
A1

A1 α1 x1

}
..........................

ψ1
...

ψi−1........................

Ki

{
Ai

Ai αi xi

}
........................

ψi
...

ψm−1...........................

Kn

{
An

An αn xn

}
...........................

ψn

Phase

1

−−→

σn

· · ·σi+1

σi

· · ·σ2

σ1ψ0.............................

K1

 σ1A1

χ1

A1 α1 X1


:::::::::::::::::

⟨X1|x1⟩ψ1

...
⟨X l|xl⟩1...i−1 ψi−1

::::::::::::::::::::::::::::::::::

⟨X l|xl⟩Ui
Ki

 σi ⟨X l|xl⟩TiAi

χi

⟨X l|xl⟩TiAi αi X i


::::::::::::::::::::::::::::::::::

⟨X l|xl⟩1...i ψi
...

⟨X l|xl⟩1...n−1 ψn−1
::

⟨X l|xl⟩Un
Kn

 σn ⟨X l|xl⟩TnAn

χn

⟨X l|xl⟩TnAn αn Xn


:::::::::::::::::::::::::::::::::::::

⟨X l|xl⟩1...n ψn

≡ ψ′

Where:

σi = [v αi xi|v]Ai

qA
C

i ≡ [C|v]Ai\{x1,...,xi−1}
qAi

X i ≡ ⟨qA
xi

1

∣∣∣x1⟩ · · · ⟨qA
xi

i−1

∣∣∣xi−1⟩ qA
xi

i

Ti = {x1, . . . , xi−1} ∩Ai

Ui = {x1, . . . , xi−1} \Ai

χi is given in Figure 6.3.

Figure 6.1: Phase 1 of the construction in Theorem 6.3.1

83

ψ′ ≡

ψ′
m..............................

Hm

{
Bm βm Y m

Bm

}
..............................

ψ′
m−1
...
ψ′
j..........................

Hj

{
Bj βj Y j

Bj

}
..........................

ψ′
j−1
...
ψ′
1...........................

H1

{
B1 β1 Y 1

B1

}
...........................

ψ′
0

Phase

2

−−→

⟨Z l|yl⟩1...m ψ′
m

:::

⟨Z l|yl⟩Wm
Hm

⟨Z l|yl⟩VmBm βm [Zm|ym]Y m

ωm

τm ⟨Z l|yl⟩VmBm


::

τm

⟨Z l|yl⟩1...m−1 ψ
′
m−1

...

· · · τj+1

⟨Z l|yl⟩1...j ψ′
j

::

⟨Z l|yl⟩Wj
Hj


⟨Z l|yl⟩VjBj βj [Zj|yj]Y j

ωj

τj ⟨Z l|yl⟩VjBj


::

τj

⟨Z l|yl⟩1...j−1 ψ
′
j−1

...

· · · τ2

⟨Z1|y1⟩ψ′
1

::::::::::::::::::::::::

H1

B1 β1 [Z1|y1]Y 1

ω1

τ1B1


::::::::::::::::::::::::

τ1ψ
′
0

≡ ψ′′

Where:

Y j = {yj}

τj = ⟨Y j|yj⟩ [v βj yj|v]Bj

pB
C

j ≡ [C|v]Bj\{y1,...,yj−1}
pBj

Zj ≡ ⟨pB
yj

1

∣∣∣y1⟩ · · · ⟨pB
yj

j−1

∣∣∣yj−1⟩ pB
yj

j

Vj = {y1, . . . , yj−1} ∩Bj

Wj = {y1, . . . , yj−1} \Bj

ωj is given in Figure 6.3.

Figure 6.2: Phase 2 of the construction in Theorem 6.3.184

invalid inference steps are arranged as in the figure. Under the assumptions
on π mentioned above, no variable xi appears in formulae A1, . . . , Ai, for
1 ≤ i ≤ n; on the other hand, xi might appear in Ai+1, . . . , An.

We build ϕ′ ≡ πψ′′, where ψ′′ is obtained from ψ in two phases. Phase 1
and Phase 2 perform similar operations on all the invalid inference steps of
ψ: in Phase 1 we fix some of them via down-merges and in Phase 2 we fix
the remaining ones via up-merges. Both phases produce substitutions that
are propagated through the derivation. Some of these substitutions might
conflict; indeed, consider the following situation:

ψ ≡
κ

{
Ai

Ai αi xi

}
.......................

κ′

{
Bj βj xi

Bj

} .

Here, xi would be assigned an instance of qAi for a down-merge at the top
and an instance of pBj for an up-merge at the bottom. By Corollary 5.2.5,
these conflicting substitutions can be reconciled via the eversion construction[

pBj

∣∣∣v]
Ai

qAi[
qAi

∣∣∣v]
Bj

pBj

.

This eversion is implemented in Phase 2 (although it could have been imple-
mented in Phase 1).

Phase 1. Each invalid inference step is replaced by an rKDT-ODS deriva-
tion χi, for 1 ≤ i ≤ n, shown in Figure 6.3. Each variable xi is replaced by
a formula X i, whose purpose is to make a down-merge of Ai via Ai and αi
possible. The down-merge is χ′

i, in the version of Proposition 5.1.20. X i is

constituted by the formula qAi whose variables are to be replaced by formulae
only containing the variable xi. The idea is that the original variable xi is
expanded into a formula, X i, whose structure matches the surroundings (to
be amenable to a merge) but whose value remains that of xi. Those variables

of qAi that are not in {x1, . . . , xi−1} are set to xi, in qA
xi

i . The other vari-

ables of qAi must be replaced by substitutions that could match the formulae

85

χi ≡

[v αi xi|v]Ai
⟨X l|xl⟩Ti Ai

χ′
i

⟨X l|xl⟩Ti Ai α
⟨⟨qA

xi

1

∣∣∣x1⟩ · · · ⟨qA
xi

l−1

∣∣∣xl−1⟩ qA
xi

l

∣∣∣xl⟩
Ti

qA
xi

i
::::::::::::::::::::::::::::::::::::::

⟨qA
xi

1

∣∣∣x1⟩ · · · ⟨qA
xi

i−1

∣∣∣xi−1⟩ qA
xi

i

ωj ≡

⟨Z l|yl⟩VjBj βj

[
⟨pB

yj

1

∣∣∣y1⟩ · · · ⟨pB
yj

j−1

∣∣∣yj−1⟩ pB
yj

j

∣∣∣yj]Y j

ω′′
j

[Y j|yj]
⟨pB

yj

1

∣∣∣y1⟩ · · · ⟨pB
yj

j−1

∣∣∣yj−1⟩ pB
yj

j
::::::::::::::::::::::::::::::::::::::

⟨⟨pB
yj

1

∣∣∣y1⟩ · · · ⟨pB
yj

l−1

∣∣∣yl−1⟩ pB
yj

l

∣∣∣yl⟩
Vj

pB
yj

j

ω′
j

[v βj Y j|v]Bj
⟨Z l|yl⟩VjBj

::::::::::::::::::::::::::::::::

⟨Y j|yj⟩ [v βj yj|v]Bj
⟨Z l|yl⟩VjBj

Figure 6.3: Auxiliary derivations for Phases 1 and 2 in Theorem 6.3.1.

86

generated by the χ1, . . . , χi−1 above χ1 in the derivation; those formulae are
qA
x1

1 , . . . , qA
xi−1

i−1 and are matched by qA
xi

1 , . . . , qA
xi

i−1. At its top, χi generates
the substitution σi, which does not change the value of the variables it ap-
plies to, and which is propagated upwards in the derivation. At its bottom,
χi generates the substitution ⟨X i|xi⟩, which is propagated downwards in the
derivation and which also does not change values because πX i = πxi. The
rest of the construction in Figures 6.1 and 6.2 is bookkeeping, mainly rely-
ing on having maximally renamed apart all variables so that we can move
substitutions without capturing any.

Phase 2. Let us call ψ′ the derivation produced in Phase 1. We operate
on it in a similar way to Phase 1 but in the other direction. The equality
steps to fix are those labelled =2, =4, =6, =8, =10 and =12 in Figure 3.6
on page 37; that is, those unit-equality inference steps which create a unit
travelling upwards in the derivation. For 1 ≤ j ≤ m, Bj takes the place
of Ai and Y j that of xi. One difference is that now Y j might be one of
the formulae X is, and not just a variable. That said, each Y j still only
contains one variable (potentially in multiple copies), say yj, and we note
that yj does not appear in B1, . . . , Bj and might appear in Bj+1, . . . , Bm.
In Phase 2, each formula Zj plays the same role as X i in Phase 1, and the
derivation ωj, shown in Figure 6.3, plays the same role as χi. There, ω′

j is
an up-merge and ω′′

j the eversion that we outlined above in this proof. The
substitution τj is propagated below ωj; unlike σi, τj contains an additional
substitution ⟨Y j|yj⟩ but for the rest its role is similar. The result of Phase 2
is a derivation ψ′′ in rKDT-ODS.

Structural Equivalence. We must show that kdtϕ ≡ kdt πψ = kdt πψ′′ ≡
kdtϕ′. The vertical composition steps added to ψ by the construction above
are compositions by expansions and the inference steps of the merge deriva-
tions χ′

i and ω′
j and of the eversions ω′′

j . Compositions by expansions are
turned by kdt into equalities. The merge derivations fall into the remit of
Propositions 5.1.20 or 5.1.22; for example, for ω′

j, we have

[Y j|yj] ⟨⟨pB
yj

1

∣∣∣y1⟩ · · · ⟨pB
yj

l−1

∣∣∣yl−1⟩ pB
yj

l

∣∣∣yl⟩
Vj

pB
yj

j

≡ [Y j|v]Bj ⟨⟨pB
yl

1

∣∣∣y1⟩ · · · ⟨pB
yl

l−1

∣∣∣yl−1⟩ pB
yl

l

∣∣∣yl⟩
Vj

pBj

≡ [Y j|v]Bj
⟨Z l|yl⟩Vj pBj

and either kdt π[Y j|v]Bj
⟨Z l|yl⟩Vj pBj ≡ 0 or kdt π[Y j|v]Bj

⟨Z l|yl⟩Vj pBj ≡ 1.

87

Therefore we obtain kdt πω′
j ≡ kdt π ⟨Z l|yl⟩VjBj ≡ kdt πBj (which could be

identical to a unit if βj is in {a, b, c, . . . }). To the eversions ω′′
j we can apply

Lemma 4.2.9 because each section of πω′′
j is either equal to 0 or to 1; this is

because the only variable that ω′′
j contains is yj, which derives from a unit in

some equality step of ϕ. Therefore either kdt πω′′
j ≡ 0 or kdt πω′′

j ≡ 1. All this
means that the vertical structure of πψ′′ is not altered by applying kdt. It
remains to be checked that all the substitutions applied in various places do
not alter the value of the sections of ϕ. Take, for example, σi = [v αi xi|v]Ai

.

Each variable vl is composed by αi to xi: if αi ∈ {∨,∧} then πxi is the unit
of αi, and if αi ∈ {a, b, c, . . . } then πxi ≡ πvl. In both cases, the value of the
expression is preserved. In those substitutions where explicit substitutions
are present, like τj, the explicit substitutions are collapsed by kdt because
they are composed exclusively of units.

Complexity.
We establish upper bounds for the width and height of ψ′. The width of

ϕ, say w, dominates the size of A1, . . . , An, and its height, say h, is such that
wh dominates n and m. The maximum section width w′ of ψ′ occurs in the
conclusion of some down-merge χ′

i, let us say χ′
n (see also Lemma 5.1.10).

Therefore,

w′ = wψ′ ≤
∣∣⟨Xl|xl⟩Un

Kn{ }
∣∣+ 2

∣∣⟨Xl|xl⟩TnAn
∣∣

≤ |Kn{ }| + 2

∣∣∣∣⟨⟨ qAxl1

∣∣∣x1⟩ · · · ⟨ qAxll−1

∣∣∣xl−1⟩ qAxll

∣∣∣xl⟩
1...n−1

An

∣∣∣∣
≤ w + 2(w + 2w + · · · + (n− 1)w + w)

= O(w3h2) .

Because of Lemma 5.1.10, the height of χ′
n also is O(w3h2), therefore the

height h′ of ψ′ is O(w3h2). Similarly, the maximum section width w′′ of ψ′′

occurs in the premise of some up-merge ω′
j, let us say ω′

m. Therefore,

w′′ = wψ′′ ≤
∣∣⟨Zl|yl⟩Wm

Hm{ }
∣∣+
∣∣⟨Zl|yl⟩VmBm

∣∣+
∣∣∣[Ym|v]Bm

⟨Zl|yl⟩Vm pBm

∣∣∣
≤ |Hm{ }| + (1 + |Ym|)

∣∣∣∣⟨⟨ qByl
1

∣∣∣y1⟩ · · · ⟨ qByl
l−1

∣∣∣yl−1⟩ qByl
l

∣∣∣xl⟩
1...m−1

Bm

∣∣∣∣
≤ w′ + (1 + w′)(w′ + 2w′ + · · · + (m− 1)w′ + w′)

= O((w′)2(wh)2)

= O(w7h5) ,

88

and this is the width of ϕ′. Because of Lemmas 5.1.10 and 5.2.1, the height of
ωj is also O(w7h5), which dominates h′, therefore the height of ϕ′ is O(w7h5).

Remark 6.3.2. The construction to eliminate the unit-equality inference steps
introduces nested atom connectives even if none appear in the given deriva-
tion. This happens because of the need for merges and eversions and their
propagation via the variables standing for the units to be eliminated. How-
ever, those nested atom connectives only belong to subformulae whose value,
as detected by kdt, is a unit. Therefore, if no proper decision trees appear
in the given derivation, none appear in the transformed one, and a standard
Tarskian semantics applies to it.

We can show exactly where the ‘merge-eversion’ method is turned from
exponential to polynomial by the use of explicit substitutions. It is the com-
position by expansion at the bottom of the merge inside χi, and the similar
composition inside ωj. In those expansions, several explicit substitutions are
factored out, relying on the fact that the formula involved uses a number of
‘formula patterns’ – the Ais, – which is linear in the size of the derivation.
Without the factorisation, those formulae would accumulate exponentially,
as described in Section 6.2: one A1 would become two A1s inside A2, then
four inside A3 and so on. However, since those patterns only contain one
variable xi (in multiple copies) they can be factored out because they are all
the same formula.

At this point, another question naturally arises: Given any derivation
ϕ in KDTEq-ODS, can we build a derivation ϕ′ in KDT-ODS such that ϕ
and ϕ′ are structurally equivalent for the abstraction kdt and such that the
size of ϕ′ is polynomial in the size of ϕ? In other words, can the same re-
sult be obtained for derivations that contain explicit substitutions to start
with? The answer appears to be negative. The problem is that, when ex-
plicit substitutions are present, units can be factored in and out of them.
The ‘merge-eversion’ method relies on substituting units with formulae that
depend on the unit-equality steps where the units are created or destroyed.
Therefore, sharing the units into an explicit substitution creates conflicts.
We consider this an interesting open problem because it might be solved by
resorting to a more powerful notion of explicit substitution.

Indeed, as we mention in the introduction, we intend to develop a new
notion of substitution by incremental steps that increase its expressive power;
we would like these substitutions to be able to operate in proof systems

89

with negation, duplication, and first- and higher-order quantifiers. We might
hope that the eventual notion of substitution achieves a fixed point for the
above problem, so that whenever we have a derivation with substitutions
and unit equalities, the unit equalities can be eliminated at polynomial cost
on the size of the derivation. In Chapter 7, we introduce a more expressive
notion of substitution which may solve this problem for the strictly linear,
propositional case, but this remains to be fully investigated.

90

Chapter 7

P-Simulation of Substitution
Frege

In this chapter, we investigate the proof complexity properties of a strictly
linear system with a notion of explicit substitutions. We do this by way
of comparison to substitution Frege systems [15], which are a class of p-
equivalent systems for propositional logic with a substitution rule. No system
is known to be more powerful than substitution Frege systems in compressing
the size of proofs, and this therefore serves as a benchmark.

System rKDTEq-OD is a conservative extension of System SKS-OD, and
Bruscoli and Guglielmi have shown that SKS-OD p-simulates Frege systems
[6]. Therefore, thanks to Theorem 6.3.1, we know that System rKDT-ODS
p-simulates Frege systems. Then, a natural question arises: Given that
rKDT-ODS has a notion of substitution, can it simulate substitution Frege
systems? We do not know, but that seems unlikely, and it has not been
possible with our current understanding of rKDT-ODS.

The difficulty arises from the fact that in substitution Frege systems,
compression can be achieved by reusing formulae, so that from a formula A
in a substitution Frege proof, both σA and τA can be obtained, where σ and
τ are unrelated substitutions. However, in the formalism ODS, substitutions
must go all the way through a proof, and so it is not obvious how to achieve
this compression: duplicating A will not work, and neither will applying σ
and τ in succession.

Instead, we can increase the power of ODS substitutions in a natural
way by a generalisation, and that indeed allows us to p-simulate substitution
Frege. The generalisation allows for more control over where a substitution

91

applies, so that only certain occurrences of a variable will be affected by a
substitution. This seems to be well-motivated from a mathematical perspec-
tive, because it extends our ability to factor out subderivations from those
which are identical to those which are similar, varying only in the objects
concerned.

This results in a natural overall translation scheme, in particular for the
Frege substitution itself. There are intricacies that we must deal with, but
they only have to do with strict linearity, to make sure that there is no
exponential propagation of variables across the translated proof.

First, we introduce the generalised substitution for open deduction, which
we name ‘supersubstitution’, then, we present a particular substitution Frege
system, and then we define a translation that achieves the desired p-simulation.

7.1 Supersubstitution

We introduce a more general notion of substitution than the one in previous
sections. The problem we want to solve is the following. Given the formula

A{B{C1}} · · · {B{Cn}} ,

how can we factor out B{ } efficiently? We introduce a notion which we call
‘supersubstitution’, which allows for the substitution of B{ } to be shared
as much as possible. With this notion, we can solve the problem with the
formula

⟨C1

∣∣x{1}⟩ · · · ⟨Cn∣∣x{n}⟩ ⟨B(x)|y⟩A
{
y{1}

}
· · ·
{
y{n}

}
,

which can be flattened in two successive steps as

⟨C1

∣∣x{1}⟩ · · · ⟨Cn∣∣x{n}⟩A{ ⌈B{x}⌉{1}
}
· · ·
{
⌈B{x}⌉{n}

}
and

A
{
⌈B{C1}⌉{1}

}
· · ·
{
⌈B{Cn}⌉{n}

}
.

The idea is that the labels {1}, . . . , {n} are inherited by what is substituted

into their ‘ranges’ ⌈ ⌉{1}, . . . , ⌈ ⌉{n}, and then a substitution ⟨Ci
∣∣x{i}⟩ is

applied only inside the range ⌈ ⌉{i}.
The introduction of such a notion is motivated from a mathematical per-

spective. A lemma may be used multiple times in a proof with different
inputs and we can compress the proof by allowing these similar subproofs to
be factored out.

92

A B

C

P

Figure 7.1: The triangle ABC in Example 7.1.1

Example 7.1.1. Consider the following sketch proof of Pythagoras’ theorem,
which makes use of the similarity of the two smaller triangles △ACP and
△BCP to △ABC, shown in Figure 7.1.

∠ACP = π
2
− ∠BAC = ∠CBA

△CBA ∼ △ACP
|AC|2 = |AB||AP |

∧
∠BCP = π

2
− ∠ABC = ∠CAB

△CAB ∼ △BCP
|BC|2 = |BA||BP |

|AC|2 + |BC|2 = |AB||AP | + |BA||BP |
|AC|2 + |BC|2 = |AB|2

The two subderivations shown in boxes are similar, differing only in that
where the left has an A the right has a B and vice versa; we consider this a
repetition of similar derivations, even though they are not identical. We can
consider the derivation

∠xCP = π
2
− ∠yxC = ∠Cyx

△Cyx ∼ △xCP
|xC|2 = |xy||xP |

;

under the substitution [A|x,B|y] we obtain the derivation on the left and
under the substitution [B|x,A|y] we obtain the derivation on the right. We
would like to be able to use supersubstitutions to factor out the repeated
derivation, and obtain the following:

93

⟨A
∣∣x{1}, B∣∣y{1}⟩ ⟨B∣∣x{2}, A∣∣y{2}⟩⟨∠xCP = π

2
− ∠yxC = ∠Cyx

△Cyx ∼ △xCP
|xC|2 = |xy||xP |

∣∣∣∣∣∣∣z⟩ z{1} ∧ z{2}
:::

⟨A
∣∣x{1}, B∣∣y{1}⟩ ⟨B∣∣x{2}, A∣∣y{2}⟩ ⌈|xC|2 = |xy||xP |

⌉{1} ∧ ⌈|xC|2 = |xy||xP |
⌉{2}

:::(
|AC|2 = |AB||AP |

)
∧
(
|BC|2 = |BA||BP |

)
|AC|2 + |BC|2 = |AB||AP | + |BA||BP |

|AC|2 + |BC|2 = |AB|2

That is, the names of the points A and B are stored in supersubstitu-
tions so that the derivation can be shared, and the variables z{1} and z{2}

‘remember’ which name goes on which variable.
This example goes beyond the current scope of the work with super-

substitutions, because it makes use of predicates and functions and a more
complicated proof system. However, it serves to show the intended direction
of development.

Definition 7.1.2. We extend the language of pre-derivations as follows.
Let R be a countable set of elementary ranges and let ◦ /∈ R denote the

null range; let R+ = R∪ {◦}.
We update Definition 2.1.1 of pre-derivations by replacing V by VP(R),

so that each variable is associated with a range, a (possibly empty) set of
elementary ranges.

We also replace the definition of composition by explicit substitution by

⟨P
∣∣∣VR+⟩ P so that each explicit substitution is associated with either an

elementary range or the null range. If the explicit substitution is associated
with an elementary range we call it a supersubstitution, and if is associated
with the null range we may write ⟨A|x⟩ instead of ⟨A

∣∣x{◦}⟩; this coincides
with the notion of explicit substitution used in previous chapters. If every
variable in a formula A is associated with every elementary range r in the
set R ⊆ R, we may write ⌈A⌉R. For a variable y∅ whose range is the empty
set, we may write y.

If all the free variable occurrences in an pre-derivation ϕ{xR1∪R
1 } · · · {xRh∪R

h }
contain the same range R, we can denote the pre-derivation as

⌈ϕ{xR1
1 } · · · {xRh

h }⌉R ;

94

then, xR and ⌈x⌉R are identical expressions, and so are ⌈⌈ϕ⌉R⌉R′
and ⌈ϕ⌉R∪R′

.
The syntactic identity relation ≡ and the size function take ranges into

account: xR ≡ xR
′

if and only if R = R′, and
∣∣xR∣∣ = 1 + |R|.

Establishing that variables have ranges necessitates updating some of
the notions presented in previous sections. In particular, we must consider
the flattening function and the correctness of instances of composition by
expansion.

Example 7.1.3. In general, supersubstitutions cannot be ‘precomposed’ and
simplified the same way as substitutions can be. For example, the substi-
tutions ⟨0|y⟩ ⟨1|y⟩ ⟨y ∨ y|x⟩ and ⟨1|y, 1 ∨ 1|x⟩ are such that for any formula
A,

fl ⟨0|y⟩ ⟨1|y⟩ ⟨y ∨ y|x⟩A ≡ fl ⟨1|y, 1 ∨ 1|x⟩A ,

so we could simplify the former to the latter purely as an operation on sub-
stitutions.

However, if we have a compound supersubstitution ⟨0
∣∣y{1}⟩ ⟨1∣∣y{2}⟩ ⟨y ∨ y|x⟩,

we cannot simplify this to ⟨1
∣∣y{2}, 1 ∨ 1

∣∣x⟩ or similar, because we will get a

different result depending on whether we apply the substitution to x{1} or
x{2}: in the first case we would get 0∨0 and in the second 1∨1. We therefore
need to be careful in our definition of the flattening function.

Definition 7.1.4. Given a formula A, we can obtain its flat expansion flA
by applying all of the substitutions:

• If A ∈ VR ∪ U then flA ≡ A.

• If A ≡ B α C then flA ≡ flB α flC.

• If A ≡ ⟨B
∣∣x{r}⟩xR then flA ≡ ⌈flB⌉R if either r ∈ R or r = ◦ and

flA ≡ xR otherwise

• If A ≡ ⟨B
∣∣x{r}⟩(C β D) then flA ≡ (fl ⟨B

∣∣x{r}⟩C) β (fl ⟨B
∣∣x{r}⟩D)

• If A ≡ ⟨B
∣∣x{r}⟩ ⟨C∣∣y{q}⟩D, for q ∈ {◦} ∪ R then

flA ≡ fl(⟨B
∣∣x{r}⟩(fl ⟨C∣∣y{q}⟩D)).

The correctness of an instance of composition by expansion was originally
defined as depending only on the flat expansion of those formulae being

composed, so that
ϕ
::

ψ
was correct whenever fl cnϕ ≡ fl prψ. For this, we

95

needed to show that this equivalence could be checked in polynomial time on
|cnϕ|+ |prψ|. However, to do the same for formulae with supersubstitutions
is difficult.

The reason for this is that we must keep track of the ranges in order to
know which supersubstitutions will apply to a variable; for example, given
a formula σ ⟨A{y}|x⟩B, in order to know which supersubstitutions in σ will
apply to y, we need to keep track of the information about every occurrence
of x in B. Therefore it’s not obvious how to compare two formulae without
computing both flat expansions, and these can be exponentially larger than
the

The work on supersubstitutions is in the early stages of its development.
Future work may lead to a polynomial-time algorithm to decide the syntactic
equivalence of flA and flB for any formulae A and B, or indeed to a different
notion altogether of how to share the repeated structures within a derivation.
For now we restrict ourselves to a more limited definition of composition by
expansion, which is nevertheless sufficient to prove the result in this chapter.

Definition 7.1.5. A pair of formulae A and B are composable by expansion
if:

• Their every variable occurrence is associated with the range ∅ and
flA ≡ flB.

• A ≡ ⟨C|y⟩σK{y} and B ≡ ⟨C|y⟩σK{⌈C⌉R}, where K{ } is either
flat or of the form ⟨H{ }|z⟩D for H{ } flat, y does not appear as a
substitution variable in σ nor does y occur free in C, and no substitution
variable in τ occurs free in C.

• A ≡ ⟨τC|x⟩D and B ≡ τ ⟨C|x⟩D, where no substitution variable of τ
occurs free in D.

• A ≡ ⟨C
∣∣x{r}⟩σK{xR} and B ≡ ⟨C

∣∣x{r}⟩σK{⌈C⌉R}, where no vari-
ables appear in C, r ∈ R, K{ } is either flat or of the form ⟨H{ }|z⟩D
for H{ } flat, and x does not appear as a substitution variable in σ.

• A ≡ σD and B ≡ D, where no substitution variable in σ appears in D.

A pre-derivation
ϕ
::

ψ
is correct if cnϕ and prψ are composable by ex-

pansion, and we call the formalism consisting of all correct pre-derivations
ODSS.

96

Example 7.1.6. The following pre-derivation is correct, provided that w, x
and y occur free in neither A nor B:

⟨0
∣∣v{3}⟩

⟨A|w⟩ ⟨B|x⟩ ⟨w ∧ x|y⟩ ⟨y{3}
∣∣z⟩ z

:::

⟨A|w⟩

⟨B|x⟩ ⟨A ∧ x|y⟩ ⟨y{3}
∣∣z⟩ z

:::::::::::::::::::::::::::::::::

⟨B|x⟩
⟨A ∧B|y⟩ ⟨y{3}

∣∣z⟩ z
::::::::::::::::::::::::::

⟨A ∧B|y⟩ ⟨⌈A ∧B⌉{3}
∣∣∣z⟩ z

:::

⟨0
∣∣v{3}⟩ ⟨A|w⟩ ⟨B|x⟩ ⟨A ∧B|y⟩ ⟨⌈[0|v] (A ∧B)⌉{3}

∣∣∣z⟩ z
We limit ourselves here to only those substitution reduction steps which

we will use in the construction in the proof of Theorem 7.3.4; other reduction
steps could be added to these but we leave extending the formalism to future
investigations into supersubstitutions. This means that not every S-ODS
derivation is a S-ODSS derivation, because it may make use of the more free
composition by expansion permitted in the ODS formalism.

Soundness follows from the fact that ranges are inherited, so that they go
all the way through the derivation, and that derivations are only identical if
their ranges are identical.

Example 7.1.7. The composition
x

:::::::::::

⟨x|y{1}⟩ y{1}
is not correct: applying ⟨x|y{1}⟩

to y{1} results in x{1}, which is not x. This therefore precludes unsound
derivations such as

⟨1|x⟩ ⟨0|x{1}⟩
x

:::::::::::

⟨x|y{1}⟩ y{1}
,

whose premise is equal to 1 and whose conclusion is equal to 0.

7.2 Substitution Frege

We introduce some standard notions in proof complexity. Good references for
this material are [13] and [14]. We can choose any convenient system among
the many available Frege systems without prejudice to the complexity class;
they are all equivalent modulo polynomial-time translations. We use one of
 Lukasiewicz’s set of axioms [23, 26] because it only has three axioms that
neatly confine the particular challenges of the translation we must perform,

97

namely dealing with weakening and contraction by maintaining strict lin-
earity. To those, we add axioms for the units, which are convenient for the
substitution rule.

F1 ≡ x→ (y→ x) F4 ≡ t

F2 ≡ (x→ (y→ z)) → ((x→ y) → (x→ z)) F5 ≡ ¬f

F3 ≡ (¬x→¬y) → (y→ x)

x x→ y
mp

y

A
usf

[f|x]A

A
ust

[t|x]A

Figure 7.2: System sFrege.

Definition 7.2.1. A Frege proof system is a finite collection of axioms and
inference rules. A Frege proof of An is a sequence of formulae A1, . . . , An
such that each Ai is either an axiom or is the conclusion of an inference
step with premises from A1, . . . , Ai−1. A substitution Frege proof system is

a Frege proof system in which there is a rule
A

σA
, where σ is a substitution.

The substitution Frege system sFrege is given in Figure 7.2, where F1, F2, F3,
F4 and F5 are axioms, the rule mp is modus ponens, and the rule schemes usf
and ust are called unit substitutions. System Frege is obtained from sFrege
by removing the rules usf and ust.

Remark 7.2.2. System Frege, and therefore System sFrege, are sound and
complete for propositional classical logic.

The connectives in sFrege are different from the connectives in rKDT.
However, polynomial-time translations can be established in both directions
via De Morgan’s laws, when rKDT atoms are not nested. The restriction to
unnested atoms is not a limitation because we are only interested in standard
propositional logic. This choice of language and axioms for sFrege has two

98

advantages: we only must translate three non-trivial axioms, and the trans-
lation makes it clear where strict linearity needs to be dealt with. Indeed,
axiom F1 realises weakening (on y) and axiom F2 realises contraction (on the
negative occurrence of x).

Definition 7.2.3. A proof system S ′ p-simulates a proof system S if a proof
of A in S can be transformed into a proof of A in S ′ in polynomial time.

One interesting feature of sFrege is that it only substitutes (formulae
equivalent to) units in the usf and ust rules. It is shown in Lemma 17 of [12]
that substituting units is enough to achieve the same power as substitut-
ing formulae. Only having to deal with unit substitutions exempts us from
introducing technical details that obscure the translation, which is already
complicated.

Remark 7.2.4. Because of Reckhow’s theorem, System sFrege p-simulates any
substitution Frege system.

7.3 P-Simulation

The language of rKDT is richer than that of sFrege. Still, we can obtain a
natural correspondence between the two languages if we do not express any
decision tree in rKDT, i.e., if we abolish nested atoms. There is a natu-
ral isomorphism between sFrege formulae and the so restricted rKDT ones,
obtained from (x→ y)↭ (x̄ ∨ y) and ¬x↭ x̄ and De Morgan’s laws.

To obtain the desired p-simulation, we must use the Merge Lemma by
mimicking arbitrary formulae without changing the semantic value of a given
formula. To do this, we use variables to control the various constructions.
We start by translating sFrege formulae into open rKDT formulae, and then
we rename apart all the variables to achieve the necessary freedom.

Much of the technicality in the proof of Theorem 7.3.4 arises from the
condition of strict linearity. Without this condition we could simulate an
instance of modus ponens via the KDTEq=-OD derivation

99

A ∧
(
Ā ∨B

)
∨q∧

A ∧ Ā
χ

ρqA
KEq

0

∨B

=
B

,

where χ is a merge as in Lemma 5.1.17 and ρ is an actual substitution
which puts either 0 ∧ 1 or 1 ∧ 0 onto every leaf of qA. Indeed this is the core
structure of the simulation that we give, but under the constraints of strict
linearity we are obliged to construct the following:

ψ ≡

[v ∨ 0|v]AA

A ∨ qA
0

∧
(
Ā ∨B

)
∨q∧

A ∧ Ā
χ

ρqA
∨
(

qA
0
∨B

) .

This propagates structures through the overall proof, which we can con-
trol with explicit substitutions.

In addition, we avoid having to duplicate and rearrange formulae, both
of which are cumbersome in a strictly linear system, by means of explicit
substitutions. In [6], it is shown that the proof system SKSg (in the calculus
of structures formalism) p-simulates a Frege system. Translated to SKSg-OD,
instances of modus ponens are simulated in this proof inside the following
construction:

100

t
=

t

A
c
A ∧ A

∧

t

Ā ∨B
c (
Ā ∨B

)
∧
(
Ā ∨B

)
=

A ∧
(
Ā ∨B

)
ω

B
∧
(
A ∧

(
Ā ∨B

))
,

where ω is the derivation which does the modus ponens. This duplicates
the formulae involved in the modus ponens so that they can be used mul-
tiple times in the proof. Using explicit substitutions, in rKDT-ODSS, this
becomes:

⟨[v ∨ 0|v]AA
∣∣∣x⟩ ⟨Ā ∨B

∣∣y⟩ ⟨x ∧ y|z⟩ z
:::

⟨[v ∨ 0|v]AA
∣∣∣x⟩ ⟨Ā ∨B

∣∣y⟩⟨
(

[v ∨ 0|v]AA
)
∧
(
Ā ∨B

)
ψ

ρqA ∨
(

qA
0
∨B

)
∣∣∣∣∣∣∣∣z⟩ z ;

and the details of how we deal with what is propagated here is dealt with
fully in the proof of Theorem 7.3.4.

By contrast to modus ponens, having introduced the mechanism of su-
persubstitution, instances of unit substitutions are comparatively simple to
simulate; we need only take care that variables are properly distinguished in
the translation from sFrege formulae to rKDT-ODSS formulae.

We suppose that we are given an sFrege proof A, [f|x]A, [t|x]A, . . . , B and
we assume that we have substitutions σ1 and σ2 which can locally simulate
the substitutions [f|x] and [t|x]. We then simulate these instances of unit
substitution as follows:

σ
{2}
2 σ

{1}
1 ⟨A|w⟩ ⟨w{1}

∣∣x⟩ ⟨w{2}
∣∣y⟩ · · · z

::

⟨A|w⟩ ⟨⌈σ{1}
1 A⌉{1}

∣∣∣x⟩ ⟨⌈σ{2}
2 A⌉{2}

∣∣∣y⟩ · · · z ;

that is, we restrict the ranges of σ1 and σ2 so that they cannot interfere
with one another.

101

We now show in detail how these constructions can be put together to
p-simulate any sFrege proof.

Definition 7.3.1. Let VF be the set that contains all the variables appearing
in any sFrege formula. Given an sFrege formula A, we obtain the correspond-
ing open formula ⌈A⌉+ in rKDT as follows:

⌈f⌉+ ≡ ⌈t⌉− ≡ f ⌈x⌉+ ≡ (ux0 x ux1) ⌈¬B⌉+ ≡ ⌈B⌉−

⌈t⌉+ ≡ ⌈f⌉− ≡ t ⌈x⌉− ≡ (ux̄1 x ux̄0) ⌈¬B⌉− ≡ ⌈B⌉+

⌈B→ C⌉+ ≡ (⌈B⌉− ∨ ⌈C⌉+) ⌈B→ C⌉− ≡ (⌈B⌉+ ∧ ⌈C⌉−)

where f and t are variables and ux0, ux1, ux̄0 and ux̄1 are also variables, for
every x ∈ VF. We call

Σ = ⟨0|f, 1|t⟩ ⟨0|ux0, 1|ux1, 0|ux̄0, 1|ux̄1⟩x∈VF

the standard value substitution. We call

Π0
x = ⟨0|ux0, 0|ux1, 1|ux̄0, 1|ux̄1⟩ and Π1

x = ⟨1|ux0, 1|ux1, 0|ux̄0, 0|ux̄1⟩

the false-for-x and the true-for-x substitutions, respectively. We call

∆ = [t|f, f |t, ux̄1|ux0, ux̄0|ux1, ux1|ux̄0, ux0|ux̄1]

the dualising substitution. The notation Ã denotes an rKDT formula A where
∨ is replaced by ∧ and ∧ is replaced by ∨.

Remark 7.3.2. An sFrege formula A is semantically equivalent to Σ⌈A⌉+. The
reason we use the four variables ux0, ux1, ux̄0 and ux̄1 for each sFrege variable
x is to simulate sFrege unit substitution. For example, the corresponding
open formula to the sFrege formula A ≡ y→ (x→ x) is

⌈A⌉+ ≡ (uȳ1 y uȳ0) ∨ ((ux̄1 x ux̄0) ∨ (ux0 x ux1)) ;

we simulate [f|x]A ≡ y→ (f → f) by

flΠ0
x⌈A⌉+ ≡ (uȳ1 y uȳ0) ∨ ((1 x 1) ∨ (0 x 0)) .

Note how four rKDT variables ux0, ux1, ux̄0 and ux̄1 for each x are necessary
for this to work.

102

Remark 7.3.3. For every sFrege formula A, we have ⌈¬A⌉+ ≡ ∆⌈̃A⌉+.

Theorem 7.3.4. System rKDT-ODSS p-simulates sFrege and System rKDT-ODS
p-simulates Frege in cubic time on the size of a given proof.

Proof. Given an sFrege proofA1, . . . , An, we will build the following rKDT-ODSS
proof:

ϕ ≡ Σσn · · ·σ1

⟨B1|y1⟩ ⟨B2|y2⟩ · · · ⟨Bn|yn⟩ yn
::

⟨ψ1|y1⟩ ⟨B2|y2⟩ · · · ⟨Bn|yn⟩ yn
::

τ1 ⟨K1{A1}|y1⟩ ⟨ψ2|y2⟩ · · · ⟨Bn|yn⟩ yn
::

...
::

τ1 · · · τn−2 ⟨K1{A1}|y1⟩ ⟨K2{A2}|y2⟩ · · · ⟨Bn|yn⟩ yn
::

τ1 · · · τn−2τn−1 ⟨K1{A1}|y1⟩ ⟨K2{A2}|y2⟩ · · · ⟨ψn|yn⟩ yn
::

τ1 · · · τn−2τn−1τn ⟨K1{A1}|y1⟩ ⟨K2{A2}|y2⟩ · · · ⟨Kn{An}|yn⟩ yn
::

τ1 · · · τnKn{An}

,

in which for 1 ≤ i ≤ n and some actual substitution ρi, the following
properties hold:

1. Σ ⟨B1|y1⟩ · · · ⟨Bi|yi⟩ yi = 1

2. Στ1 · · · τiKi{ } = { }

3. Ai ≡ [ρiv ∨Zv|v]⟨⟨Ai⟩⟩⟨⟨Ai⟩⟩, where if where if πv /∈ {f, t}, then Zv ≡ 0,

otherwise Zv ≡ 0 or Zv ≡ 0 xv 0, for some xv.

4. ∀v ∈ ⟨⟨Ai⟩⟩, either
(
ρiv = {πv} and ρiv = πv

)
, or

(
ρiv = ∅, πv ∈

{f, t} and Σρiv = Σπv
)

103

5. σi does not apply to K1{A1}, . . . , Kn{An}

6. τi = ⟨C1

∣∣zi1, . . . ,Cdi

∣∣zidi⟩ and Ki{ } ≡ (zi1 ∨ · · · (zidi ∨ { }) · · ·), where
the zijs are fresh and distinct and no yi appears in any Cj

7. ∀x ∈ VF, all instances of ux0, ux1, ux̄0 and ux̄1 in ϕ are in the scope
of x, and every subformula C ≡ D xE of Bi or τiKi{ } is such that
ΣC = ΣΠ0

xC = ΣΠ1
xC

8. σi =


Π0

x restricted to range i if ψi simulates usf for x
Π1

x restricted to range i if ψi simulates ust for x
ϵ otherwise

The flat derivations ψ1, . . . , ψn correspond each to an instance of an axiom
or an application of mp, usf or ust; their role is to make available to the rest of
the proof, via the fresh and distinct variables y1, . . . , yn, the flat formulae A1,
. . . , An, which simulate A1, . . . , An. Σ is the standard value substitution.
Each substitution σi is empty except when it contributes to simulate an
sFrege unit substitution rule; in that case, σi is an explicit supersubstitution
Π0

x or Π1
x, for some x, whose substitution variables are restricted to the range

i; the range i, informally, corresponds to the i-th ‘column’ in ϕ; the details
are in the part of this proof about simulating substitution. Note that ϕ only
uses supersubstitutions if the given proof uses substitutions. We note that
what is denoted in the construction as composition by expansion may in fact
abbreviate up to three instances of composition by expansion, in the case
where Ai and Ai+1 are both obtained by modus ponens, but this does not
affect the order of the height of the construction.

If ψi simulates an axiom, the flat context Ki{ } is identical to { }; other-
wise, if ψi simulates a modus ponens between Ah and Ah → Ak, then Ki{ }
is a disjunction of 0-valued formulae that, intuitively, collect the variables
involved in the rKDT realisation of a cut between Ah and ¬Ah. As a con-
sequence, Ki{ } might be different from { } when ψi simulates a unit sub-
stitution. The τis are explicit substitutions that prevent the modus-ponens

104

contexts Ki{ }s from growing exponentially by factoring out certain formu-
lae.

This is how the premise of ψi is related to the rest of the proof: if ψi
simulates an axiom, then prψi ≡ Bi; if ψi simulates a modus ponens between
Ah and Ak, then Bi is built around a conjunction of yh and yk, and prψi ≡
fl ⟨Kh{Ah}|yh⟩ ⟨Kk{Ak}|yk⟩Bi; if ψi simulates a unit substitution for Ah,

then Bi ≡ y
{i}
h and prψi ≡ flσi ⟨Kh{Ah}|yh⟩Bi. Concerning the conclusion

of ψi, in every case we have cnψi ≡ fl τiKi{Ai}.
We assume to have an actual renaming substitution π and, for every i,

an open rKDT formula ⟨⟨Ai⟩⟩ such that

π⟨⟨Ai⟩⟩ ≡ ⌈Ai⌉+

and all the variables in ⟨⟨A1⟩⟩, . . . , ⟨⟨An⟩⟩ are maximally renamed apart and
fresh. Note that, for every variable v appearing in any of ⟨⟨A1⟩⟩, . . . , ⟨⟨An⟩⟩ we
have either Σπv = 0 or Σπv = 1. We use the ⟨⟨Ai⟩⟩s to build the derivations
simulating the axioms and modus ponens – renaming apart the variables
allows us to treat different occurrences of the same variable differently.

In the following case analysis, we prove the properties given above; they
help to understand the construction and guide the proof of its correctness.
Properties 1, 2, 3 and 4 are proved by induction on n. Properties 5, 6, 7 and
8 are guaranteed by the construction. Those properties ensure that ϕ is a
simulation of the given sFrege proof.

Property 1 guarantees that each ψi simulation could be flattened into a
derivation having premise equal to 1.

Property 7 guarantees that the value of every subformula in the premise
of ϕ that corresponds to an sFrege variable x remains unchanged by any
false-for-x or true-for-x substitution; it guarantees the same also for the part
of the conclusion of ϕ that collects the variables involved in cuts.

Property 8 guarantees that the only possible substitutions are of the false-
for-x or true-for-x kind.

Together, Properties 1, 7 and 8 entail

pr ϕ ≡ Σσn · · ·σ1 ⟨B1|y1⟩ · · · ⟨Bn|yn⟩ yn = 1 ;

note that the order of the σis in σn · · ·σ1 does not matter.
Property 2 guarantees that the modus-ponens context Ki and its related

explicit substitution τi do not alter the value of Ai.

105

Property 3 models the structure of each Ai formula in such a way that the
simulations are strictly linear; Property 4 guarantees that the extra structure
needed for that (which mostly goes into the actual substitution ρi) does not
alter the value of Ai.

Properties 5 and 6 are non-trivial only in the case of modus ponens and
substitution and are further clarified below.

Properties 7, 5, 2, 6, 3 and 4 entail

cnϕ ≡ Σσn · · ·σ1τ1 · · · τnKn{An}
= ΣAn

≡ Σ [ρnv ∨Zv|v] ⟨⟨An⟩⟩⟨⟨An⟩⟩
= Σπ⟨⟨An⟩⟩
≡ Σ⌈An⌉+

,

which is semantically equivalent to An.
We now see in detail how each ψi is built, based on its nature.

Axioms. If Ai is an instance of an axiom F1, F2 or F3, we build a flat
derivation ωi according to the scheme in Figure 7.3, 7.4 or 7.5, respectively.
If Ai is an instance of F4 or F5, we set ωi ≡ t. In an effort to simplify the
notation, in all the constructions for axioms, we assume that the formulae
C, D and E, with various decorations, are local to those constructions (i.e.,
a C1 for one axiom is not the same as a C1 for another one). In every case,
we let σi = τi = ϵ, therefore satisfying Properties 5 and 8.

We set Ki{ } ≡ { } (therefore di = 0), which implies cnψi ≡ Ai, so
satisfying Properties 2 and 6.

We are given ⟨⟨Ai⟩⟩, obtained from ⌈Ai⌉+ by maximally renaming fresh
variables apart such that π⟨⟨Ai⟩⟩ ≡ ⌈Ai⌉+. ⟨⟨Ai⟩⟩ contains subformulae that
might be merged inside ωi to build its premise and conclusion. For example,
for F1 in Figure 7.3, ⟨⟨Ai⟩⟩ is decomposed into C1, C2 and D1 and these three
formulae determine the formulae C1

1, C3, C4 and D2; the derivations χijs are
obtained from the Merge Lemma 5.1.10 or its variant 5.1.17. The derivation
ψi is obtained from ωi via a merge construction by Lemma 5.1.17:

ψi ≡
ωi ∨ [0|v]⟨⟨Ai⟩⟩⟨⟨Ai⟩⟩

[ρiv ∨ 0|v]⟨⟨Ai⟩⟩⟨⟨Ai⟩⟩
.

106

This construction relies on the identity

cnωi ≡ ρi⟨⟨Ai⟩⟩ , (7.1)

where ρi is some actual substitution; we build ρi and verify the above identity
for each axiom in the following. Identity 7.1 immediately yields Property 3
in the case of axioms. Note that cnψi is semantically equivalent to cnωi –
it just contains some ‘padding’ with 0s. We do this construction to extract
those 0s in the modus ponens simulation, as required by strict linearity.

For every axiom instance we set

Bi ≡ prωi ∨ [0|v]⟨⟨Ai⟩⟩⟨⟨Ai⟩⟩ ≡ prψi .

In the case of axioms, Properties 1, 2, 3 and 4 do not rely on the induction
hypothesis. Since ϕ1 must simulate an axiom, establishing those properties
for axioms serves as the base case for each of them. Having established
Properties 2, 5, 6 and 8, in the following we only must verify Properties 1,
3, 4 and 7 for each possible axiom.

Axiom F1. We simulate Ai ≡ C → (D→ C) and we refer to Figure 7.3.
The substitution into D1 realises the weakening of formula D by weakening
each unit that appears in flΣπD1. The derivation χi1 realises the identity

C→C; note that C1 and C̃1 are down-conjugates of pC1, therefore we can use
the Merge Lemma 5.1.10 with some renaming substitution ρ that depends on
the renaming substitution π. The derivation χi2 helps to maintain the strict
linearity of ωi by merging C1 with an up-conjugate of itself set to be equal
to 1.

We verify Property 1:

Σ ⟨B1|y1⟩ · · · ⟨Bi|yi⟩ yi = Σ ⟨Bi|yi⟩ yi
= Σπ

(((
C1

1 ∨ [(0 ∧ v) ∨ (v ∧ 0)|v]D1
D1

)
∧C3

)
∨ [0|v]⟨⟨Ai⟩⟩⟨⟨Ai⟩⟩

)
= Σπ[v ∨ ρv|v]C1

pC1 = [Σπv ∨ Σ∆πv|v]C1

pC1 = 1 ,

because y1, . . . , yi−1 do not appear in Bi, and because Σπv and Σ∆πv have
dual values (see Remark 7.3.3).

We verify Property 3 by verifying Identity 7.1 and at the same time
assigning a value to ρi:

cnωi ≡ π(C4 ∨ (D2 ∨C2))

≡ π
(

[1 ∧ v|v]C1
C1 ∨

(
[(0 ∨ v) ∧ (v ∨ 0)|v]D1

D1 ∨C2

))
≡ π[1 ∧ v|v]C1

[(0 ∨ v) ∧ (v ∨ 0)|v]D1
⟨⟨Ai⟩⟩ ≡ ρi⟨⟨Ai⟩⟩ ;

107

ωi ≡ π

C1
1 ∨

[
(0 ∧ v) ∨ (v ∧ 0)

∧q∨
(0 ∨ v) ∧ (v ∨ 0)

∣∣∣∣∣v
]
D1

D1

 ∧
C3

χi
1

C1 ∨C2
∨q∧

C1
1 ∧C1

χi
2

C4

∨ (D2 ∨C2)

⟨⟨Ai⟩⟩ ≡ C1 ∨ (D1 ∨C2)

C2 ≡ ρC̃1

C1
1 ≡ [1|v]C1

pC1

C3 ≡ [v ∨ ρv|v]C1

pC1

C4 ≡ [1 ∧ v|v]C1
C1

D2 ≡ [(0 ∨ v) ∧ (v ∨ 0)|v]D1
D1

Figure 7.3: Simulation of F1 instance Ai ≡ C → (D→ C) in Theorem 7.3.4.

108

we exploit the fact that the variables of ⟨⟨Ai⟩⟩ are maximally renamed apart.
We then use ρi to verify Property 4, given that ρiv = {πv} for v ∈ ⟨⟨Ai⟩⟩:

π[1 ∧ v|v]C1
[(0 ∨ v) ∧ (v ∨ 0)|v]D1

v = πv .

Property 7 holds because, for all x ∈ VF, all instances of ux0, ux1, ux̄0 and
ux̄1 in ϕ are in the scope of x in π⟨⟨A⟩⟩i and this fact is not changed by any
of the substitutions and inference steps in ωi. Moreover, the value of ΣπC1

1

and Σπ[(0 ∧ v) ∨ (v ∧ 0)|v]D1
D1 is not affected by any substitution. Finally,

concerning the subformulae of πC3, for v ∈ C1, if πv ≡ ux0 then ∆πv ≡ ux̄1,
which means Π0

xπv ∨ Π0
x∆πv = 0 ∨ 1 = 1 = 1 ∨ 0 = Π1

xπv ∨ Π1
x∆πv, and

similarly if πv ≡ ux1, πv ≡ ux̄1 and πv ≡ ux̄0.

Axiom F2. We simulate Ai ≡ (C→(D→E))→((C→D)→(C→E)) and
we refer to Figure 7.4. The construction and the way we prove its properties
are similar to those for Axiom F1. There is no weakening here, but there is a
contraction on C, realised by derivation χi9. The derivations χi1, χ

i
2, χ

i
3 and

χi4 realise the identities (¬C→¬C), (¬C→¬C), (¬D→¬D) and (E→E),
respectively. The derivations χi5, χ

i
6, χ

i
7, χ

i
8 and χi10 help to maintain the

strict linearity of ωi. The substitution ρi can be computed by composing the
substitutions to be applied to ⟨⟨Ai⟩⟩ to get cnωi, i.e.,

ρi = π[1 ∧ (0 ∨ v)|v]C1
[0 ∨ v|v](D1∧E1)

[v ∧ 1|v]C2
[0 ∨ v|v]D2

[v ∨ v|v]C3
[0 ∨ v|v]E2

.

Verifying Properties 1, 3, 4 and 7 is similar to what we did for Axiom F1.

Axiom F3. We simulate (¬C→¬D)→(D→C) and we refer to Figure 7.5.
The construction and the way we prove its properties are similar to those
for Axioms F1 and F2. There is no weakening and no contraction here. The
derivations χi1 and χi2 realise the identities C→C and ¬D→¬D, respectively.
The derivations χi3, χ

i
4, χ

i
5 and χi6 help to maintain the strict linearity of ωi.

The substitution ρi can be computed by composing the substitutions to be
applied to ⟨⟨Ai⟩⟩ to get cnωi, and verifying Properties 1, 3, 4 and 7 is similar
to what we did for Axioms F1 and F2.

Axioms F4 and F5. Property 1 is immediate. Properties 3 and 4 fol-
low from ⟨⟨Ai⟩⟩ ≡ v, for some variable v, such that πv ≡ t and Ai ≡
[t ∨ 0|v]⟨⟨Ai⟩⟩⟨⟨Ai⟩⟩ ≡ t ∨ 0. Property 7 is trivial because ψi contains no atom

connectives.

Modus Ponens. We simulate

Ah Ah → Ai
mp

Ai

109

ω
i
≡
π

  E0
∨

 
C

5

χ
i 1

C
2
∨
C

3

∧
(C1 2

∨
E

0 2

)   ∧
(C1 1

∨
D

0 2

) ∧
C

4

χ
i 2

C
1
∨
C

3
∨

q ∧
(C1 1

∧
C

1

) ∨(
D

0 2
∨
C

3

)∧

D
3

χ
i 3

D
1
∨
D

2

∧
E

3

χ
i 4

E
1
∨
E

2
∨

q ∧
(D

1
∧
E

1
)
∨

(D
2
∨
E

2
)

∨
q ∧
((C1 1

∧
C

1

) ∧(
D

1
∧
E

1
)) ∨

((D
0 2
∨
C

3

) ∨(
D

2
∨
E

2
))

q ∧
∨

E
0
∨

 C
1 1
∧
C

1

χ
i 5 C

6

∧
(D

1
∧
E

1
) 

χ
i 6

C
9
∧

(D
5
∧
E

5
)

∨

(C
2
∨
C

3
)
∧
(C1 2

∨
E

0 2

)
∨

q ∧
(C 2

∧
C

1 2

) ∨(
C

3
∨
E

0 2

) ∧
(D0 2

∨
C

3

) ∨(
D

2
∨
E

2
)

∨
q ∨
(D0 2

∨
D

2

) ∨(
C

3
∨
E

2
)

∨
q ∧
 C

2
∧
C

1 2

χ
i 7 C

7

∧
D

0 2
∨
D

2

χ
i 8 D

4

  ∨
(C 3

∨
E

0 2

) ∨(
C

3
∨
E

2
)

∨
q ∨

C
3
∨
C

3

χ
i 9 C

8

∨
E

0 2
∨
E

2

χ
i 1
0 E

4

⟨⟨A
i⟩⟩

≡
(C

1
∧

(D
1
∧
E

1
))
∨

((
C

2
∧
D

2
)
∨

(C
3
∨
E

2
))

C
1
≡
ρ
1
C̃

3

C
2
≡
ρ
2
C̃

3

C
1 1
≡

[1
|v

] C
1

p C
1

C
1 2
≡

[1
|v

] C
2

p C
2

C
4
≡

[ρ
1
v
∨
v
|v

] C
3

p C
3

C
5
≡

[ρ
2
v
∨
v
|v

] C
3

p C
3

C
6
≡

[1
∧
v
|v

] C
1
C

1

C
7
≡

[v
∧
1|
v
] C

2
C

2

C
8
≡

[v
∨
v
|v

] C
3
C

3

D
1
≡
ρ
3
D̃

2

E
2
≡
ρ
4
Ẽ

1

D
0 2
≡

[0
|v

] D
2
D

2

E
0 2
≡

[0
|v

] E
2
E

2

D
3
≡

[ρ
3
v
∨
v
|v

] D
2

p D
2

E
3
≡

[v
∨
ρ
4
v
|v

] E
1

p E
1

D
4
≡

[0
∨
v
|v

] D
2
D

2

E
4
≡

[0
∨
v
|v

] E
2
E

2

E
0
≡

[0
|v

] C
6
∧
(D

1
∧
E

1
)(
C

6
∧

(D
1
∧
E

1
))

C
9
∧

(D
5
∧
E

5
)
≡

[0
∨
v
|v

] C
6
∧
(D

1
∧
E

1
)(
C

6
∧

(D
1
∧
E

1
))

F
ig

u
re

7.
4:

S
im

u
la

ti
on

of
F
2

in
st

an
ce
A
i
≡

(C
→

(D
→
E

))
→

((
C
→
D

)
→

(C
→
E

))
in

T
h

eo
re

m
7.

3.
4.

110

ωi ≡ π

(
C1

1 ∨D0
2

)
∧

C3

χi
1

C1 ∨C2
∨q∧ (

C1
1 ∧C1

)
∨
(
D0

2 ∨C2

) ∧

D3

χi
2

D1 ∨D2

∧
(
D1

1 ∨C0
2

)
∨q∧ (

D1 ∧D1
1

)
∨
(
D2 ∨C0

2

)
∨q∧  C1

1 ∧C1

χi
3

C4

∧
D1 ∧D1

1

χi
4

D4

 ∨

(
D0

2 ∨C2

)
∨
(
D2 ∨C0

2

)
∨q∨

D0
2 ∨D2

χi
5

D5

∨
C2 ∨C0

2

χi
6

C5

⟨⟨Ai⟩⟩ ≡ (C1 ∧D1) ∨ (D2 ∨C2)

C2 ≡ ρ1C̃1

D1 ≡ ρ2D̃2

C1
1 ≡ [1|v]C1

pC1

D1
1 ≡ [1|v]D1

pD1

C0
2 ≡ [0|v]C2

C2

D0
2 ≡ [0|v]D2

D2

C3 ≡ [v ∨ ρ1v|v]C1

pC1

D3 ≡ [ρ2v ∨ v|v]D2

pD2

C4 ≡ [1 ∧ v|v]C1
C1

D4 ≡ [v ∧ 1|v]D1
D1

C5 ≡ [v ∨ 0|v]C2
C2

D5 ≡ [0 ∨ v|v]D2
D2

Figure 7.5: Simulation of F3 instance Ai ≡ (¬C → ¬D) → (D → C) in
Theorem 7.3.4.

111

ψi ≡

Hli{Kh{Ah}} ∧Hmi
{Kk{A′

h ∨Ai}}...(
F i

1 ∨ · · ·
(
F i
di
∨Ah

)
· · ·
)
∧
(
Gi

1 ∨ · · ·
(
Gi
di
∨ (A′

h ∨Ai)
)
· · ·
)

χi
1 {q∧∨}

(
F i

1 ∨Gi
1

)
∨ · · ·


(
F i
d′i
∨Gi

d′i

)
∨

Ah

χi
2

A′′
h ∨A0

h

∧ (A′
h ∨Ai)

∨q∧
A′′
h ∧A′

h

χi
3

A′′′
h

∨
(
A0
h ∨Ai

)


· · ·


σi = ϵ

d′i = max(dh, dk) = di − 2

li = d′i − dh

mi = d′i − dk

Hj{ } ≡ (0 ∨ · · · (0 ∨︸ ︷︷ ︸
j

{ }) · · ·)

Bi ≡ Hli{yh} ∧Hmi
{yk}

Ah ≡
[
ρhv ∨Zv

∣∣v]⟨⟨Ah⟩⟩
⟨⟨Ah⟩⟩

Ak ≡
[
ρkv ∨Zv

∣∣v]⟨⟨Ak⟩⟩
⟨⟨Ak⟩⟩ ≡ A′

h ∨Ai

A′
h ≡ ρk ⟨̃⟨Ah⟩⟩

A′′
h ≡ ρh⟨⟨Ah⟩⟩

A0
h ≡ [0|v]⟨⟨Ah⟩⟩

~⟨⟨Ah⟩⟩

A′′′
h ≡

[
ρhv ∧ ρkv

∣∣v]⟨⟨Ah⟩⟩
~⟨⟨Ah⟩⟩

Ki{ } ≡ (zi1 ∨ · · · (zidi ∨ { }) · · ·)

τi = ⟨F i
j ∨Gi

j

∣∣zij⟩1≤j≤d′i ⟨A′′′
h

∣∣∣zid′i+1,A
0
h

∣∣∣zid′i+2⟩
Figure 7.6: Simulation of modus ponens instance in Theorem 7.3.4.

112

and we refer to Figure 7.6. We set σi = ϵ and Bi ≡ Hli{yh} ∧Hmi
{yk},

where the contexts Hli{ } and Hmi
{ } (one of which is identical to { }) make

sure that the two conjuncts in Bi have disjunctions of 0-valued formulae of
equal ‘depth’, i.e., li + dh = mi + dk = d′i. The ‘depth’ of context Ki{ } is
di = d′i + 2. The formulae F i

1, . . .F i
di

and Gi
1, . . .Gi

di
are either 0 or some

variable ‘z’ from Kh{ } or Kk{ }. We are given Ah and Ak. We assume that

Ak ≡ A′
h ∨Ai simulates Ak ≡ Ah → Ai. From Ak we extract A′

h ≡ ρk ⟨̃⟨Ah⟩⟩
for some substitution ρk obtained from ρk. We build the derivation χi1 by
repeatedly applying q∧∨. χi2 and χi3 are two merge derivations for the formulae
defined in the figure. The ability to perform χi2 is why we ‘pad’ with 0s the
conclusion of ωh in the simulations of axioms.

Property 1, i.e., Σ ⟨B1|y1⟩ · · · ⟨Bi−1|yi−1⟩ ⟨Hli{yh} ∧Hmi
{yk}|yi⟩ yi = 1,

follows directly from the induction hypothesis.
Property 2, i.e., Στ1 · · · τiKi{ } = { }, follows from the following facts:

1. By the induction hypothesis, Στ1 · · · τhKh{ } = Στ1 · · · τkKk{ } = { },
which implies

Στ1 · · · τhF i
j = Στ1 · · · τkGi

j = 0 , for 1 ≤ j ≤ d′i.

2. Since

• by Property 6, τ1, . . . , τi do not apply to A′′′
h because it only

contains variables from Ah and Ak,

• by Property 4, for v ∈ ⟨⟨Ah⟩⟩, we have Σρhv = Σπv,

• A′
h ≡ ρk ⟨̃⟨Ah⟩⟩ ≡

[
ρkρ′kv ∨Zv

∣∣v]⟨⟨Ah⟩⟩
⟨̃⟨Ah⟩⟩, for some renaming sub-

stitution ρ′k, and then, for v ∈ ⟨⟨Ah⟩⟩ and by Property 4, we have

Σρkv = Σρkρ′kv = Σπρ′kv = Σ∆πv, whose value is dual to that of
Σπv (see Remark 7.3.3),

we obtain

Στ1 · · · τiA′′′
h = Σ

[
ρhv ∧ ρkv

∣∣v]⟨⟨Ah⟩⟩
~⟨⟨Ah⟩⟩ = [Σπv ∧ Σ∆πv|v]⟨⟨Ah⟩⟩

~⟨⟨Ah⟩⟩ = 0 .

3. Στ1 · · · τiA0
h = 0.

113

Property 3 is proved by induction by taking ρi =
[
ρkρv

∣∣v]⟨⟨Ai⟩⟩
, for some

renaming substitution ρ that maps ⟨⟨Ai⟩⟩ into ⟨⟨Ak⟩⟩, such that

Ai ≡
[
ρkρv ∨Zρv

∣∣v]⟨⟨Ai⟩⟩
⟨⟨Ai⟩⟩ and πρ⟨⟨Ai⟩⟩ ≡ π⟨⟨Ai⟩⟩ ≡ ⌈Ai⌉+ ;

note that πv ≡ πρv and Zv ≡ Zρv, for all v ∈ Ai.
Property 4 holds because, for all v ∈ ⟨⟨Ai⟩⟩ and by the induction hypoth-

esis, we have ρiv = ρkρv and πv ≡ πρv, and

ρiv ≡ ρkρv = πρv ≡ πv or Σρiv ≡ Σρkρv = Σπρv ≡ Σπv ,

according to whether ρiv is nonempty or empty.
Property 7 trivially holds for Bi. Regarding τiKi{ }, the only non-trivial

check concerns A′′′
h , for which we have (see Case 2 above):

ΣA′′′
h = Σ[πv ∧ ∆πv|v]⟨⟨Ah⟩⟩

~⟨⟨Ah⟩⟩ = 0 .

From Σ(ux0 ∧ ∆ux0) = 0 and

Π0
x(ux0 ∧ ∆ux0) ≡ Π0

x(ux0 ∧ ux̄1) = 0 ∧ 1 = 0 = 1 ∧ 0 = Π1
x(ux0 ∧ ux̄1) ≡ Π1

x(ux0 ∧ ∆ux0) ,

and from the similar cases of ux1, ux̄0 and ux̄1, we conclude that Property 7
holds.

Properties 5, 6 and 8 are true by construction.

Unit substitution. We only show the simulation of

Ah
usf

[f|x]Ah
,

the case of ust being similar.
We set

σi = ⟨0
∣∣∣u{i}x0 , 0∣∣∣u{i}x1 , 1∣∣∣u{i}x̄0 , 1∣∣∣u{i}x̄1 ⟩ and Bi ≡ y

{i}
h .

Let ρ be an actual substitution such that ⟨⟨Ah⟩⟩ ≡ ρ⟨⟨Ai⟩⟩ ≡ ρ⟨⟨[f|x]Ah⟩⟩.
ρ is a renaming substitution for all variables except for those in the set
X ⊆ ⟨⟨Ai⟩⟩ that collects the (renamed apart) results of instances of x that got

substituted, and which is so defined: v ∈ X if and only if ρv ≡ vL x vR, for
some variables vL and vR that depend on v. Note that if v ∈ X then either

114

πv ≡ f and πρv ≡ ux0 x ux1, or πv ≡ t and πρv ≡ ux̄1 x ux̄0. Given ρh, we
get

Ah ≡
[
ρhv ∨Zv

∣∣v]⟨⟨Ah⟩⟩
⟨⟨Ah⟩⟩ ≡

[
ρhρv ∨Zρv

∣∣v]⟨⟨Ai⟩⟩
⟨⟨Ai⟩⟩ .

The simulation is performed by

ψi ≡ fl

⌈
Kh

{[
Π0

x

(ρhvL ∨ 0) x (ρhvR ∨ 0)
∨qx

(ρhvL x ρhvR) ∨ (0 x 0)

∣∣∣∣∣v
]
X

[
ρhρv ∨Zρv

∣∣v]⟨⟨Ai⟩⟩\X
⟨⟨Ai⟩⟩

}⌉{i}

,

where
prψi ≡ flσi ⟨Kh{Ah}|yh⟩Bi

as required. Note that, for all v ∈ X, we have ZvL ≡ ZvR ≡ 0 because
πvL /∈ {f, t} and πvR /∈ {f, t}. We define

ρi =
[
flΠ0

xρ
hρv
∣∣v]⟨⟨Ai⟩⟩

and Ai ≡
[
⌈ρiv⌉{i} ∨Zv

∣∣∣v]
⟨⟨Ai⟩⟩

⟨⟨Ai⟩⟩ ,

which satisfies Property 3 because for all v ∈ X, we have πv ∈ {f, t} and
Zv ≡ 0 x 0. We set di = dh and

τi = ⟨zh1 {i}
∣∣∣zi1, . . . , zhdh{i}∣∣∣zidi⟩ and Ki{ } ≡

⌈
(zi1 ∨ · · · (zidi ∨ { }) · · ·)

⌉{i}
,

therefore we have
cnψi ≡ fl τiKi{Ai}

as required.
Property 1 follows from the induction hypothesis:

Σ ⟨B1|y1⟩ · · · ⟨Bi−1|yi−1⟩ ⟨y{i}h
∣∣∣yi⟩ yi = ⌈Σ ⟨B1|y1⟩ · · · ⟨Bh|yh⟩ yh⌉{i} = 1 .

Property 2 also follows from the induction hypothesis:

Στ1 · · · τiKi{ } ≡ Στ1 · · · τi−1 ⟨zh1 {i}
∣∣∣zi1, . . . , zhdh{i}∣∣∣zidi⟩ ⌈(zi1 ∨ · · · (zidi ∨ { }) · · ·)

⌉{i}
= Στ1 · · · τh

⌈
(zh1 ∨ · · · (zhdh ∨ { }) · · ·)

⌉{i}
= ⌈Στ1 · · · τhKh{ }⌉{i} = { } .

To prove Property 4 we use the induction hypothesis and we distinguish
four cases:

115

1. If v ∈ ⟨⟨Ai⟩⟩ \X and ρhρv = {πρv}, then ρiv = {πρv} = {πv} and

ρiv ≡ Π0
xρ

hρv ≡ ρhρv = πρv ≡ πv ,

because Π0
x does not apply.

2. If v ∈ ⟨⟨Ai⟩⟩ \ X and ρhρv = ∅ and πρv ∈ {f, t}, then ρiv = ∅ and
πv ≡ πρv and

Σρiv ≡ ΣΠ0
xρ

hρv ≡ Σρhρv = Σπρv ≡ Σπv .

3. If v ∈ X and πv = f we have:

ρiv ≡ flΠ0
xρ

hρv ≡ flΠ0
xρ

h(vL x vR) ≡ flΠ0
x(ρhvL x ρhvR)

= flΠ0
x(πvL x πvR) ≡ flΠ0

x(ux0 x ux1) ≡ 0 x 0 ,

where we exploited the fact that πvL, πvR /∈ {f, t}; note that ρiv = ∅;
then we have

Σρiv = 0 x 0 = 0 = Σf = Σπv .

4. If v ∈ X and πv = t we proceed as for the previous case.

Properties 5, 6, 7 and 8 are satisfied by the construction.

Complexity. In the worst case, the height of a ψi is linear in the size of the
given proof and its width quadratic; this might happen for a modus ponens

Ah Ah → Ai
mp

Ai

with a large Ah and where variables have accumulated many ranges. The
height of all the ψis (except those simulating substitutions, which is constant)
is dominated by the height of merge derivations, which is in turn linear on
their width. Given that there is a linear number of ψis, the size of ϕ is at
most quartic in the size of the given sFrege proof. Checking that pr ϕ = 1
and cnϕ = Σ⌈An⌉+ can be done in linear time on their sizes.

This therefore shows that rKDT-ODSS is as powerful as sFrege. We do
not show the converse here, that sFrege p-simulates rKDT-ODSS, but we
have no reason to think that this is not the case.

116

Chapter 8

Cut Elimination

We now turn to the normalisation of strictly linear proofs by showing a cut
elimination procedure. As we mention in the introduction, the motivation
for developing a theory of strictly linear derivations is that this combines
a theoretical foundation for explicit substitutions with simple normalisation
procedures. We would like to be able to take a proof in any standard system,
translate it to a strictly linear setting, normalise inside that system, and then
project back to the original system without too much difficulty.

In this chapter, we show that we can give a straightforward and direct
proof of cut elimination for a certain class of proofs, containing in particular
all those obtained from an SKS-OD proof. We do this by applying the method
from [5] of eliminating cuts via projections and committing to the lax notion
of conjugacy, working within the system KDT-ODS.

A projection on a derivation is a pair of maps that, for some atom a,
produce the derivations in which that atom is either true or false. A decision
tree AaB can be understood semantically as “if a is false then A; otherwise
B”, and so the projection maps work by only keeping what is in one side
of the scope of the atom and discarding the rest. For example, the left-
projection of (0 ∧ 1) a (1 ∧ 0) on a is 0 ∧ 1 and its right-projection on a is
1 ∧ 0.

The precise notion of projection which we use in this thesis differs from
that used in [5]; in that paper, the projections operate on formulae with
nested atoms such as Aa (BaC) by discarding everything which is in both
the left- and right-scope of an atom, such as B; whatever is discarded can
then be reconstructed. In a strictly linear system we do not have the same
freedom to discard and reconstruct logical material, and so we take care to

117

not discard anything.
We do this by working primarily on ‘regular’ derivations, which are those

derivations which do not contain any such nested occurrences of an atom.
Decision trees such as Aa (B bC) are permitted (assuming that none of A,
B and C themselves contain occurrences of a or b), but not A a (B a C).
We show in this section that a regular derivation can be obtained from any
SKS-OD derivation (and from any regular KDTEq-OD derivation), and so
this includes all objects of interest.

We work in the lax system KDT-ODS because this gives us access to

the mix rule
A ∧B

q∧
A ∨B

, so that when we retain only what is in the left-scope

of the atom a in the rule
(AaB) ∧ (C aD)

q∧a
(A ∨C) a (B ∧D)

we get an instance of this

rule. We do not prove any complexity result relating to cut elimination here,
but it is hoped that this will be the subject of future work because deep
inference systems in general possess good complexity properties with respect
to cut elimination [7] and we expect that supersubstitutions will play a role
in these investigations.

Definition 8.0.1. A cut on a in KDTEq-OD is any instance of the rule

(AaB) ∧ (C aD)
∧pa

(A ∧C) a (B ∧D)

such that A = 0 = D and B = 1 = C, or A = 1 = D and B = 0 = C.
In the system KDT-ODSS, we take explicit substitutions in the context into
account, and so a cut on a is any subderivation

K

{
A

∧pa
B

}

inside a derivation such that flK{A} and flK{B} when vertically composed
form a cut on a.

We note that when we translate an SKS-OD derivation to KDTEq-OD, as
described in Remark 3.3.8, instances of the cut rule i become cuts as described
here; and when we simulate an instance of modus ponens in rKDT-ODSS, as
shown in Figure 7.6, the subderivation χi3 contains such a cut for every atom

118

a appearing in Ah. The projection to SKS-OD of a derivation in KDTEq-OD
containing such a cut will exhibit a cut i in the same location.

By projecting a cut to the left on the atom a, we will get
A ∧C
...........
A ∧C

; and

projecting to the right on a we will get
B ∧D
...........
B ∧D

. Both of these are equal to

0 under the condition on the value of the formulae in the cut.

8.1 Cut Elimination via KDTEq-OD

In [5], it is shown that cuts can be eliminated from proofs in KDTEq-OD
using projections. That is, given a proof ϕ ∈ KDTEq-OD, it is shown that
there exists a proof

1
=

1

la ϕ

la cnϕ

a

1

ra ϕ

ra cnϕ

cnϕ

,

where la ϕ and ra ϕ are obtained from ϕ by projecting to the left and right
respectively.

Therefore, given a proof ϕ ∈ rKDT-ODS, we can flatten all of the substitu-
tions to obtain a proof in rKDTEq-OD, perform the cut elimination procedure
to obtain a cut-free proof in KDTEq-OD, and then eliminate the created unit
equalities to obtain a proof in rKDT-OD ⊂ rKDT-ODS. Any substitutions
in cnϕ can then be factored out of the conclusion of the resulting proof. It
suffices to show that the procedure for eliminating unit equalities given in
Chapter 6 does not create any cuts, which is straightforward by examining
the constructed merges and eversions.

Proposition 8.1.1. For any cut-free proof ϕ ∈ rKDTEq-OD, the structurally
equivalent proof ϕ′ ∈ rKDT-ODS constructed as described in Theorem 6.3.1
is cut-free.

Proof. The only inference steps created in the construction are in the up-
and down-merge constructions and the eversion constructions.

119

All of the leaves in an eversion get the same unit substituted onto them,
so no inference step created in the eversion can satisfy the condition on the
value of the cut.

All of the inference steps created in a down-merge are saturated in the
conclusion, and so cannot be a cut.

If an inference step
(AaB) ∧ (C aD)

∧pa
(A ∧C) a (B ∧D)

is created in an up-merge, then

C = D, corresponding to the value of the unit (or equivalently A = B, when
the unit is on the left in the unit-equality inference step).

Therefore no cuts are created in the construction.

This procedure works for all proofs in KDT-ODS, so this is a stronger
result than the one shown in the next section. However, this procedure
necessitates applying all substitutions and leaving the strictly linear proof
system. Therefore, when possible, we prefer to eliminate the cuts as shown
in the next section, and we show that this procedure applies to all the proofs
obtained from a standard proof in SKS-OD.

8.2 Cut Elimination for Regular Proofs

This section consists of two parts: first we define regularity and show how
we can modify the transformation in Chapter 6 to preserve this property;
second we show how the cuts can be eliminated from any regular proof via
projections. The modification of the transformation in Chapter 6 is not nec-
essary in order to give a direct proof of cut elimination for those KDT-ODS
proofs obtained from SKS-OD, but it does make this proof more straightfor-
ward and allows us to characterise cut elimination for a larger class of proofs
which includes those regular KDT-ODS proofs which are not obtained from
a proof at the standard level.

Definition 8.2.1. We call a KDT-ODS derivation regular if there is no sec-
tion whose flat expansion is of the form K{H{A a B} a C} or K{A a
{H{B aC}}.

Definition 8.2.2. For a regular derivation ϕ ∈ KDT-ODS and an atom a
we define the left-projection on a of ϕ, written la ϕ, as follows:

• If ϕ ∈ V ∪ U then la ϕ ≡ ϕ.

120

• If ϕ ≡ ψ a χ then la ϕ ≡ la ψ.

• If ϕ ≡ ψ β χ for β ̸≡ a then la ϕ ≡ la ψ β la χ.

• If ϕ ≡ ⟨ψ|x⟩χ then la ϕ ≡ ⟨la ψ
∣∣x⟩ la χ.

• If ϕ ≡
ψ
::

χ
then la ϕ ≡

la ψ
:::

la χ
.

• If ϕ ≡

ψ
.................................
(AaB) ∧ (C aD)

q∧a
(A ∨C) a (B ∧D)
.................................

χ

or ϕ ≡

ψ
.................................
(A ∧C) a (B ∨D)

p∨a
(AaB) ∨ (C aD)
.................................

χ

then

la ϕ ≡

la ψ..................
laA ∧ laC

q∧
laA ∨ laC..................

la χ

.

• If ϕ ≡

ψ
................................
(A β B) a (C βD)

qaβ
(AaC) β (B aD)
................................

χ

or ϕ ≡

ψ
................................
(AaC) β (B aD)

paβ
(A β B) a (C βD)
................................

χ

then

la ϕ ≡
la ψ......
la χ

, and similarly for aq∧ and ap∨. Note that here β cannot be

a due to the assumption that ϕ is regular.

• If ϕ ≡
ψ

r
χ

in any other case, then la ϕ ≡
la ψ

r
la χ

; note here again that

r cannot be aqa due to the assumption that ϕ is regular.

The right-projection on a of a regular derivation ϕ is defined analogously and
denoted by ra ϕ.

Remark 8.2.3. For any atom a and any regular derivation ϕ ∈ KDT-ODS,
la ϕ and ra ϕ are uniquely determined. For any distinct atoms a and b,

121

πa ∈ {la, ra} and πb ∈ {lb, rb} commute. Note that it is not the case that la
and ra commute: for example la ra(0a1) ≡ la 1 ≡ 1 and ra la(0a1) ≡ ra 0 ≡ 0.

Remark 8.2.4. For any regular derivation ϕ and any atom a, the projections
la ϕ and ra ϕ contain no occurrences of a, and so neither contains any cuts
on a.

Example 8.2.5. Let

ϕ ≡
(0 a 1) ∧ (1 a 0)

∧pa
(0 ∧ 1) a (0 ∧ 1)

b (x a y)

aqb
((0 ∧ 1) b x) a ((0 ∧ 1) b y)

.

Then

la ϕ ≡
0 ∧ 1
........
0 ∧ 1

b x

.................
(0 ∧ 1) b x

ra ϕ ≡
1 ∧ 0
........
0 ∧ 1

b y

................
(0 ∧ 1) b y

lb ϕ ≡
(0 a 1) ∧ (1 a 0)

∧pa
(0 ∧ 1) a (0 ∧ 1)

................................
(0 ∧ 1) a (0 ∧ 1)

rb ϕ ≡
x a y
........
x a y

Although ϕ contains a cut on a, neither la ϕ nor ra ϕ do.

It can be the case that eliminating the unit-equality inference steps from
a regular derivation results in irregularity.

Example 8.2.6. Let

ϕ ≡
x a y

=
(x a y) ∧ 1

=
x a y

.

Applying Phase 1 of the construction, given in Figure 6.1, results in the
following pre-derivation:

ϕ′ ≡

(x ∧ 1) a (y ∧ 1)
∧qa

(x a y) ∧ (1 a 1)
:::::::::::::::::::::

⟨1 ∧ 1|u⟩
(x a y) ∧ u
x a y

.

122

Phase 2 of the construction, given in Figure 6.2, does not take into account
that all of the necessary logical material is already present, resulting in the
following derivation:

ϕ′′ ≡

⟨1 a 1|u⟩
(x ∧ u) a (y ∧ u)

∧qa
(x a y) ∧ (u a u)

::::::::::::::::::::::::::::::::::::

⟨ (1 a 1) a (1 a 1)
aqa

(1 a 1) a (1 a 1)

∣∣∣∣∣u⟩ ((x a y) ∧ u)

::::::::::::::::::::::::::::::::::::

⟨1 a 1|u⟩
(x a y) ∧ (u a u)

∧pa
(x ∧ u) a (y ∧ u)

,

which shows irregularity inside the eversion.

Any irregularity created in this way is redundant in the construction. To
see this, consider the procedure for eliminating a pair of unit equations such
as in the following derivation:

π

ϕ
.....................................

K

{
A{w a x}

=
A{w a x} α u

}
.....................................

ψ
...................................

H

{
B{y a z} β u

=
B{y a z}

}
...................................

χ

The merge constructions by which we simulate the unit-equality infer-

ence steps propagate upwards a substitution ⟨qA
u
{u a u}

∣∣∣u⟩ and downwards

a substitution ⟨qB
u
{u a u}

∣∣∣u⟩, which are resolved by an eversion which con-

tains an inference step
(u a u) a (u a u)

aqa
(u a u) a (u a u)

. That is to say, we create the

logical material of (u a u) twice and substitute one copy into the other. We
can alter the construction so that this material is created only once and
shared between the merge constructions, replacing the inference step aqa by
the formula (u a u).

123

Example 8.2.7. The derivation

ϕ ≡
x a y

=
(x a y) ∧ 1

=
x a y

can be simulated by the regular derivation

ϕ′′ ≡

(x ∧ 1) a (y ∧ 1)
∧qa

(x a y) ∧ (1 a 1)
:::::::::::::::::::::

⟨1 a 1|u⟩ ((x a y) ∧ u)
:::::::::::::::::::::

(x a y) ∧ (1 a 1)
∧pa

(x ∧ 1) a (y ∧ 1)

,

The previous example only considers the case where there is a single
atom shared between the formulae in the unit-equality inference steps, but
in general the formulae may have many atoms in common and we must
address all of them in order to ensure regularity. We can do this by taking
composite projections of the formulae to be propagated in such a way that
we create only the necessary material and avoid substituting any atom into
its own scope.

Notation 8.2.8. Let A be an open and regular formula with variables {x1, . . . , xm}
such that each variable occurs exactly once in A. We denote by πA

i the pro-
jection induced by xi in A. That is, for each atom a, la is in πA

i if xi occurs
in A in the left-scope of the atom a, ra is in πA

i if xi occurs in A in the
right-scope of the atom a, and neither is in πA

i if xi does not occur in A in
the scope of the atom a. By the assumptions of regularity and that each
variable occurs exactly once, these three cases are mutually exclusive.

For example, if A ≡ (x1αx2)a((x3bx4)∧x5) then πA
1 = la and πA

4 = ra rb.

Lemma 8.2.9. Let A and B be open and regular KDT formulae; let A =
{x1, . . . , xm} and B = {y1, . . . , yn}; and suppose that each variable xi occurs
exactly once in A and each variable yj occurs exactly once in B. Then there
exist regular derivations in KDT-ODS:[

πB
j

pA
∣∣∣yj]

B

qB[
πA
i

qB
xi
∣∣∣xi]

A

pA

[
πB
j

pA
yj
∣∣∣yj]

B

qB[
πA
i

qB
∣∣∣xi]

A

pA

,

124

where Bxi ≡ [xi|yj]BB and Ayj ≡ [yj|xi]AA.

Proof. We consider the derivation on the left, the one on the right being
analogous. The proof follows the same induction as the proof of the Eversion
Lemma 5.2.1, differing only in the case where A ≡ A1aA2 and B ≡ B1aB2.
In this case we build the following derivation:

[
πB
j

(
pA1 a pA2

)∣∣∣yj]
B

(
qB1 a qB2

)
...la πB1

j

(
pA1 a pA2

)
............................

πB1
j

pA1

∣∣∣∣∣∣yj


B1

qB1

IH πA1
i

qB
xi

1.............................

la π
A
i

(
qB
xi

1 a qB
xi

2

)∣∣∣∣∣∣xi


A1

pA1

a

ra πB2
j

(
pA1 a pA2

)
.............................

πB2
j

pA2

∣∣∣∣∣∣yj


B2

qB2

IH πA2
i

qB
xi

2..............................

ra π
A
i

(
qB
xi

1 a qB
xi

2

)∣∣∣∣∣∣xi


A2

pA2

...[
πA
i

(
qB1 a qB2

)∣∣∣xi]
A

(
pA1 a pA2

)

This construction coincides with the normal eversion shown in Lemma 5.2.1
whenever at most one of A and B contains the atom a. When both A and
B contain the atom a, this construction avoids creating more material than

necessary, essentially replacing the inference step
(x a y) a (x a y)

aqa
(x a x) a (y a y)

in the

normal eversion by
x a y
........
x a y

and propagating accordingly, leaving the construc-

tion otherwise unchanged.
We note that in general this transformation would affect the value of parts

of the derivation, because x ̸= xay ̸= y. However, according to our semantic
interpretation of decision trees, any subderivation which occurs in both the
left- and right-scope of an atom a does not affect the value of the overall
derivation. Moreover, in using this construction to eliminate unit equalities,
we will substitute the same unit onto every leaf of the derivation so the value
will be unchanged.

Example 8.2.10. Let pA ≡ (x1 a (x2 b x3)) ∧ x4 and qB ≡ ((y1 a y2) ∨ y3) b y4.
We then obtain the following induced projections:

125

πB
1

pA≡ la lb pA≡x1 ∧ x4 πA
1

qB≡ la qB ≡ (y1 ∨ y3) b y4
πB
2

pA≡ ra lb pA≡x2 ∧ x4 πA
2

qB≡ lb ra qB ≡ y2 ∨ y3
πB
3

pA≡ lb pA ≡ (x1 a x2) ∧ x4 πA
3

qB≡ rb ra qB≡ y4

πB
4

pA≡ rb pA ≡ (x1 a x3) ∧ x4 πA
4

qB≡ qB ≡ ((y1 a y2) ∨ y3) b y4

We construct the following regular eversion with premise
[
πB
j

pA
∣∣∣yj]

B

qB

and conclusion
[
πA
i

qB
xi
∣∣∣xi]

A

pA:

(x1 ∧ x4) a (x2 ∧ x4)
∧qa

(x1 a x2) ∧ (x4 a x4)
∨ ((x1 a x2) ∧ x4)

∧q∨
((x1 a x2) ∨ (x1 a x2)) ∧ ((x4 a x4) ∨ x4)

b ((x1 a x3) ∧ x4)

∧qb

(x1 a x2) ∨ (x1 a x2)
aq∨

(x1 ∨ x1) a (x2 ∨ x2)
b (x1 a x3)

aqb
((x1 ∨ x1) b x1) a ((x2 ∨ x2) b x3)

∧ (((x4 a x4) ∨ x4) b x4)

.

Corollary 8.2.11. Given any regular derivation ϕ in KDTEq-OD, we can
build a regular derivation ϕ′ in KDT-ODS such that ϕ and ϕ′ are structurally
equivalent for the abstraction kdt.

Proof. We proceed as in the proof of Theorem 6.3.1. However, we replace
the eversion in each ωj in Figure 6.2 by the regular eversion whose existence
is proven in Lemma 8.2.9, and propagate the corresponding substitutions
though the construction.

The same argument for structural preservation applies in this case: when
we substitute the same unit onto every leaf in the regular eversion, the ab-
straction map kdt will collapse the eversion to that unit; and the propagated
substitutions will behave in the same way.

Corollary 8.2.12. Given any derivation ϕ of A in SKS-OD, we can build a
corresponding regular derivation ϕ′ of A′ in KDT-ODS, where A is equal to
the SKS interpretation of A′.

126

Proof. We translate the SKS-OD derivation into KDTEq-OD as shown in
Remark 3.3.8. This translation does not result in any nesting of atoms, so
the resulting derivation is regular. We can then eliminate the unit equalities
as shown in Corollary 8.2.11 to obtain a regular derivation in KDT-ODS.

In Chapters 4 and 6, we emphasised that the structural equivalence be-
tween a KDTEq-OD derivation and the rKDT-ODS derivation obtained by
eliminating its unit-equality inference steps was sufficient to ensure that nor-
malisation procedures would not be affected by this transformation. In this
chapter, we have modified the procedure for eliminating the unit-equality
inference steps. This may seem to be contradictory.

In fact we could have left the procedure intact. We show in Proposition
8.1.1 that it never creates any cuts, so we could have defined the projec-
tion maps to ignore any material created by it. However, it seems that an
inevitable consequence of doing so would be that such a notion of projec-
tion could only apply to those KDT-ODSS derivations obtained from regular
KDTEq-OD derivations and not to the larger class of all regular KDT-ODSS.
We prefer to give a definition of projection which is more straightforward
and leads to obtaining a proof of cut elimination for a larger class of proofs.

Moreover, it is striking that the Eversion Lemma can be modified to
preserve a property of interest such as regularity in this way. Neither of
Lemma 5.2.1 and Lemma 8.2.9 imply the other, although they do coincide
when the formulae concerned are regular and have no overlap between their
atoms, suggesting that they might both be examples of a more general con-
struction.

The following proposition shows how to reconstruct a formula given its
two projections. Its proof follows the same scheme as that of the Merge
Lemma 5.1.17. For simplicity, and without loss of generality, we state it for
open formulae, i.e., formulae where no units appear. It is a special case of
Lemma 8.2.9, but we show the full induction in the proof to show that no
cuts are created.

Proposition 8.2.13. For every atom a and every open and regular KDT
formula A such that all its variables are maximally renamed apart, there
exists a cut-free derivation

χa(A) ≡
la Aa ra A

KDT-ODS

[v a v|v]V A

,

127

for the set of variables V = A \ (la A ∪ ra A).

Proof. We proceed by induction on the structure of A.

• If A ∈ V then χa(A) ≡ la Aa ra A ≡ AaA ≡ [v a v|v]{A}A.

• If A ≡ B a C then, because A is regular, χa(A) ≡ laA a ra A ≡
B aC ≡ [v a v|v]∅A.

• If A ≡ B β C for β ̸≡ a then we build

χaA ≡

(
la B β laC

)
a
(
ra B β ra C

)
βqa

la B a ra B
χa(B)

[v a v|v]U B
β

la C a ra C
χa(C)

[v a v|v]W C

;

we take V = U ∪W ; the condition on variables being maximally re-
named apart ensures that U∩C = ∅ = W∩B, therefore [v a v|v]V A ≡
[v a v|v]U B β [v a v|v]W C.

• If A ≡ ⟨B|x⟩C then we build

χaA ≡

⟨la B
∣∣x⟩ laC a ⟨ra B

∣∣x⟩ raC
:::::::::::::::::::::::::::::::::::::::

⟨la B
∣∣y⟩ ⟨ra B∣∣z⟩ [y|x] la C a [z|x] ra C

χ′
a(C)

[y a z|x] [v a v|v]U C
:::::::::::::::::::::::::::::::::::::::

⟨ la B a ra B
χa(B)

[v a v|v]W B

∣∣∣∣∣∣x⟩ [v a v|v]U C

,

where, with y and z fresh variables, χ′
a(C) is obtained from χa(C) by

renaming the occurrence of x in la C by y and that of x in ra C by z
and propagating the renamings; we take V = U ∪W and the condition
on variables being maximally renamed apart ensures that U ∩C = ∅ =
W ∩B, therefore [v a v|v]V A ≡ ⟨[v a v|v]W B|x⟩ [v a v|v]U C.

No cuts are generated in any step because all inference steps are of the the
form βqa, for β a connective in A.

128

Remark 8.2.14. By Remark 3.3.5, a proof in KDT-ODS cannot contain any
free variable. Moreover, if A = 1 then la Aa raA = 1.

We can eliminate cuts by building a proof that explores all the assign-
ments of truth values to atoms, like in a truth table. Each assignment gen-
erates two projections, and the projections are kept together by the atom
connective corresponding to the atom being tested. The order by which
values are assigned is arbitrary.

Theorem 8.2.15 (Cut Elimination). In KDT-ODS, for every regular proof
of A we can build a cut-free proof of A′, such that A = A′.

Proof. Given a KDT-ODS proof ϕ0, we extract all the units into a substitu-
tion π0, such that ϕ0 ≡ π0ψ

′
0 and the variables in ψ′

0 are maximally renamed
apart. We enumerate a1, · · ·an those atoms on which there is a cut in ψ0.
By Proposition 8.2.13 we build

ϕ1 ≡
la1 ψ0 a ra1 ψ0

χa1 (cnψ0) KDT-ODS

[v a1 v|v]V0 cnψ0

.

We make ψ1 ≡ π1ϕ1 such that all its variables are maximally renamed apart
and we repeat the construction on ψ1, ψ2 and so on until we obtain ϕn. The
derivation ϕ ≡ π0π1 · · · πn−1ϕn is cut-free, by Remark 8.2.4, and cnϕ = cnϕ0.
By Remark 8.2.14, we have that pr ϕ = 1.

Corollary 8.2.16. For every proof ϕ of A in SKS-OD, we can build a cut-free
proof ϕ′ of A′ in KDT-ODS such that the interpretation of ϕ′ into SKS-OD
is structurally equivalent to ϕ and the interpretation A′ into SKS is equal to
A.

Proof. By Corollary 8.2.12, we can construct a corresponding regular proof
in KDT-ODS; by Theorem 8.2.15, we can eliminate the cuts from that proof
to obtain a cut-free proof ϕ′ of a suitable A′. We then apply the abstraction
map kdt followed by the standard interpretation map given in [2] to ϕ′.

This procedure for cut elimination does not make any use of the explicit
substitutions within the system to compress the resulting cut-free proof. An
interesting avenue for future work would be to evaluate and compare the
compression afforded by cuts and explicit substitutions, following the line

129

of [27] and [35] in which it is shown that the deep inference formalism of
the calculus of structures allows for a cut-free system with substitutions to
be directly compared to a system with cuts and without substitutions, and
speculated that substitutions may be as powerful as the cut.

130

Chapter 9

Conclusions

We believe that the work presented here brings us one step closer to the
objective of having a good semantics of proofs. One essential test for that
semantics will be its ability to express a non-degenerate and useful notion
of identity of proofs (which is known as Hilbert’s 25th problem [36]). The
reason we think that this work contributes is that we envisage the following
progression:

1. Based on the strictly linear proof systems and supersubstitution de-
veloped in this thesis, we define a notion of substitution for standard
(deep-inference) proof systems that works with structural rules and,
especially, identity-cut cycles.

2. We extend explicit substitution to the first order, in particular, we deal
with quantification as a special case of substitution (there is prelimi-
nary, unpublished research about that).

3. We attempt to define the identity of two proofs as their being fac-
torisable to the same proof via that notion of substitution (plus some
equality relation decidable in polynomial time).

This is our highest priority for future research.

131

Bibliography

[1] Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy. Explicit substi-
tutions. In Proceedings of the 17th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 31–46, 1989.

[2] Andrea Aler Tubella. A Study of Normalisation Through Subatomic
Logic. PhD thesis, University of Bath, 2017.

[3] Andrea Aler Tubella and Alessio Guglielmi. Subatomic proof sys-
tems: Splittable systems. ACM Transactions on Computational Logic,
19(1):5:1–33, 2018.

[4] Andrea Aler Tubella, Alessio Guglielmi, and Benjamin Ralph. Remov-
ing cycles from proofs. In Valentin Goranko and Mads Dam, editors,
26th EACSL Annual Conference on Computer Science Logic (CSL), vol-
ume 82 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 9:1–17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.

[5] Chris Barrett and Alessio Guglielmi. A subatomic proof system for
decision trees. ACM Transactions on Computational Logic, 23(4):26:1–
25, 2022.

[6] Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep
inference. ACM Transactions on Computational Logic, 10(2):14:1–34,
2009.

[7] Paola Bruscoli, Alessio Guglielmi, Tom Gundersen, and Michel Parigot.
Quasipolynomial normalisation in deep inference via atomic flows and
threshold formulae. Logical Methods in Computer Science, 12(1):5:1–30,
2016.

132

[8] Kai Brünnler. Two restrictions on contraction. Logic Journal of the
IGPL, 11(5):525–529, 2003.

[9] Kai Brünnler. Locality for classical logic. Notre Dame Journal of Formal
Logic, 47(4):557–580, 2006.

[10] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic.
Technical Report WV-01-02, Technische Universität Dresden, 2001.

[11] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical
logic. In R. Nieuwenhuis and Andrei Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR), volume 2250
of Lecture Notes in Computer Science, pages 347–361. Springer, 2001.

[12] Samuel R. Buss. Some remarks on lengths of propositional proofs.
Archive for Mathematical Logic, 34(6):377–394, 1995.

[13] Samuel R. Buss. Propositional proof complexity – An introduction.
In Ulrich Berger and Helmut Schwichtenberg, editors, Computational
Logic, volume 165 of NATO ASI series. Series F. Computer and Systems
Sciences, pages 127–178. Springer, 1999.

[14] Peter Clote and Evangelos Kranakis. Boolean Functions and Computa-
tion Models. Springer, 2002.

[15] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of
propositional proof systems. Journal of Symbolic Logic, 44(1):36–50,
1979.

[16] Gerhard Gentzen. Investigations into logical deduction. In M.E. Szabo,
editor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-
Holland, Amsterdam, 1969.

[17] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–
102, 1987.

[18] Alessio Guglielmi. A system of interaction and structure. ACM Trans-
actions on Computational Logic, 8(1):1:1–64, 2007.

[19] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep in-
ference via atomic flows. Logical Methods in Computer Science, 4(1):9:1–
36, 2008.

133

[20] Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A proof calcu-
lus which reduces syntactic bureaucracy. In Christopher Lynch, editor,
21st International Conference on Rewriting Techniques and Applications
(RTA), volume 6 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 135–150. Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, 2010.

[21] Alessio Guglielmi, Tom Gundersen, and Lutz Straßburger. Breaking
paths in atomic flows for classical logic. In Jean-Pierre Jouannaud,
editor, 25th Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 284–293. IEEE, 2010.

[22] Tom Gundersen, Willem Heijltjes, and Michel Parigot. Atomic lambda
calculus: A typed lambda-calculus with explicit sharing. In Orna
Kupferman, editor, 28th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 311–320. IEEE, 2013.

[23] Yasuyuki Imai and Kiyoshi Iséki. On axiom systems of propositional
calculi. I. Proceedings of the Japan Academy, 41(6):436–439, 1965.

[24] Emil Jeřábek. Proof complexity of the cut-free calculus of structures.
Journal of Logic and Computation, 19(2):323–339, 2009.

[25] Delia Kesner. A theory of explicit substitutions with safe and full com-
position. Logical Methods in Computer Science, Volume 5, Issue 3, July
2009.

[26] Jan Lukasiewicz. Elements of Mathematical Logic, volume 31 of Pure
and Applied Mathematics. Pergamon Press, 1963.

[27] Novak Novaković and Lutz Straßburger. On the power of substitution in
the calculus of structures. ACM Transactions on Computational Logic,
16(3):19:1–20, 2015.

[28] M.S. Paterson and M.N. Wegman. Linear unification. Journal of Com-
puter and System Sciences, 16(2):158–167, 1978.

[29] Detlef Plump. Term graph rewriting. In Hartmut Ehrig, Gregor Engels,
Hans-Joerg Kreowski, and Grzegorz Rozenberg, editors, Handbook of
Graph Grammars and Computing by Graph Transformation, Volume

134

2: Applications, Languages and Tools, volume 2, pages 3–61. World
Scientific Publishing, Singapore, 1999.

[30] Benjamin Ralph. Modular Normalisation of Classical Proofs. PhD the-
sis, University of Bath, 2019.

[31] Alessio Santamaria. Towards a Godement calculus for dinatural trans-
formations. PhD thesis, University of Bath, Somerset, UK, 2019.

[32] Charles Stewart and Phiniki Stouppa. A systematic proof theory for
several modal logics. In Renate Schmidt, Ian Pratt-Hartmann, Mark
Reynolds, and Heinrich Wansing, editors, Advances in Modal Logic
(AiML), volume 5, pages 309–333. King’s College Publications, 2005.

[33] Lutz Straßburger. A local system for linear logic. In Matthias Baaz and
Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR), volume 2514 of Lecture Notes in Computer Sci-
ence, pages 388–402. Springer, 2002.

[34] Lutz Straßburger. From deep inference to proof nets via cut elimination.
Journal of Logic and Computation, 21(4):589–624, 2011.

[35] Lutz Straßburger. Extension without cut. Annals of Pure and Applied
Logic, 163(12):1995–2007, 2012.

[36] Rüdiger Thiele. Hilbert’s twenty-fourth problem. American Mathemat-
ical Monthly, 110:1–24, 2003.

[37] Alwen Tiu. A system of interaction and structure II: The need for deep
inference. Logical Methods in Computer Science, 2(2):4:1–24, 2006.

[38] Ingo Wegener. Branching Programs and Binary Decision Diagrams:
Theory and Applications. SIAM Monographs on Discrete Mathematics
and Applications. Society for Industrial and Applied Mathematics, 2000.

135

	Introduction
	Deep Inference
	Subatomic Logic
	Strict Linearity
	Outline

	Formalisms
	Pre-derivations
	Substitutions
	Composition by Expansion
	Synchronal Composition
	Open Deduction with Substitution

	Proof Systems
	Preliminaries
	Standard Proof Systems
	Subatomic Proof Systems

	Abstraction and Structural Equivalence
	Definitions
	Abstraction for Strictly Linear Systems

	The Eversion Lemma
	Merge
	Eversion
	System DT*

	Strict Linearity
	Compression via Eversion
	Compression via Explicit Substitutions
	Main theorem

	P-Simulation of Substitution Frege
	Supersubstitution
	Substitution Frege
	P-Simulation

	Cut Elimination
	Cut Elimination via KDTEq-1.5mu1.5muOD
	Cut Elimination for Regular Proofs

	Conclusions

